Question 1: 10 points. The three-pin parabolic arch shown in Figure 1 has a profile shape,

$$
\begin{equation*}
y(x)=\left[\frac{4 f}{l^{2}}\right] x(l-x) \tag{1}
\end{equation*}
$$

where $f=4 \mathrm{~m}$ and $l=16 \mathrm{~m}$.

Figure 1: Elevation view of a parabolic three-pin arch.

Questions:
[1a] Calculate the horizontal and vertical components of reaction force at A and B.
[1b] Calculate the internal forces (i.e., shear, moment and axial forces) at point E.
[1c] Draw the bending moment diagram.

Question 2: 10 points

Figure 2 shows an elevation view of a pre-fabricated steel building frame that is subject to a variety of snow and wind loadings.

Figure 2: Elevation view of pre-fabricated steel building frame subject to snow and wind loadings.

Assuming that the frames are spaced at 20 ft centers, and that the foundation-level supports and roof apex are pinned (i.e., the frame can be modeled as a three-pinned arch), compute the vertical and horizontal reactions at the base supports.

Question 3: 10 points

The cable structure shown in Figure 3 carries a uniform load $w_{o} \mathrm{~N} / \mathrm{m}$ along its entire length.

Figure 3: Elevation view of a pedestrian swing bridge.
[3a] Starting from first principles (i.e., the differential equation), show that cable profile is given by the equation

$$
\begin{equation*}
y(x)=\frac{w_{o} x^{2}}{2 H}+\left(1-\frac{15 w_{o}}{H}\right) x . \tag{2}
\end{equation*}
$$

Now let us assume that the minumum value of the cable profile occurs at $\mathrm{x}=10$.
[3b] Show that the horizontal cable force is:

$$
\begin{equation*}
H=5 w_{o} . \tag{3}
\end{equation*}
$$

[3c] Derive a simple expression for the maximum tensile force in the cable.

Question 4: 10 points

The cable structure shown in Figure carries a triangular load that is zero at the left-hand support and increases to $w_{o} \mathrm{~N} / \mathrm{m}$ at the right-hand support.

[4a] Starting from first principles (i.e., the differential equation), show that cable profile is given by the equation

$$
\begin{equation*}
y(x)=\frac{w_{o} x^{3}}{180 H}+\left(1-\frac{5 w_{o}}{H}\right) x . \tag{4}
\end{equation*}
$$

Now let us assume that the minumum value of the cable profile occurs at $\mathrm{x}=10$.
[4b] Show that the horizontal cable force is:

$$
\begin{equation*}
H=\frac{20 w_{o}}{6} . \tag{5}
\end{equation*}
$$

[4c] Draw and label a diagram showing the horizontal and vertical components of reaction force at the leftand right-hand cable supports.

Question 5: 10 points

An inclined pedestrian walkway is supported by two identical cables and a system of closely space hangers. The cable towers are 40 m apart with one 4 m higher than the other. One end of the walkway is 5 m below the cables at the high tower and 3 m below the cables at the low tower.

Figure 4: Schematic of walkway dimension (not to scale).

If the smallest possible hanger is 1 m long, and the walkway weighs $5 \mathrm{kN} / \mathrm{m}$, determine:
[5a] H , the horizontal component of force in the cable?
[5b] The maximum force in the cable?
[5c] The length of the cable?

