ENCE 353 Midterm 2, Open Notes and Open Book

Name:

E-mail (print neatly!):

\qquad

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	10	
3	15	
Total	40	

Question 1: 15 points

Analysis of a Cantilevered Beam with Moment-Area Method. Consider the cantilevered beam structure shown in Figure 1.

Figure 1: Front elevation view of a cantilevered beam structure.
[1a] (3 pts) Briefly explain how the principle of superposition - hint, hint, hint, hint !!! - can be applied to this problem.
[1b] (2 pts) Draw and label the M/EI diagrams for the two subproblems.
[1c] (4 pts) Use the method of moment area to compute the rotation at point A.
[1d] (4 pts) Use the method of moment area to compute the vertical deflection of the beam at point C .
[1e] (2 pts) Draw the deflected shape of the beam. Indicate the sections of beam where the curvature is constant.

Question 2: 10 points

Analysis of a Three-Pinned Parabolic Arch. Consider the three-pinned parabolic arch shown in Figure 2

Figure 2: Three-pinned parabolic arch carrying a point load.

The height and width of the arch are h and L, respectively. A point load P is applied at a distance $x, 0 \leq \mathrm{x}$ $\leq \mathrm{L} / 2$, from the axis of symmetry.
[2a] (3 pts) Starting from first principles of engineering (i.e., equations of equilibrium), show that the vertical and horizontal reaction forces at A and B are:

$$
\begin{align*}
& V_{A}(x)=P\left[\frac{1}{2}-\frac{x}{L}\right] \tag{1}\\
& V_{B}(x)=P\left[\frac{1}{2}+\frac{x}{L}\right] \tag{2}\\
& H_{A}(x)=H_{B}(x)=\frac{P}{2 h}\left[\frac{L}{2}-x\right] \tag{3}
\end{align*}
$$

Question 2a continued:

Now suppose that the point load P is replaced by a uniform load $w_{o}(\mathrm{~N} / \mathrm{m})$ along the complete width of the arch, i.e.,

Figure 3: Three-pinned parabolic arch carrying a uniform load.
[2b] (3 pts) Draw and label a picture showing how the principle of superposition can be used in this problem.
[2c] (4 pts) By using equations 1 through 3 as a starting point, and noting that a tiny increment of uniform loading can be written $\mathrm{P}(\mathrm{x})=w_{0} \mathrm{dx}$, show that:

$$
\begin{equation*}
V_{A}=V_{B}=\left[\frac{w_{o} L}{2}\right] \quad \text { and } \quad H_{A}=H_{B}=\left[\frac{w_{o} L^{2}}{8 h}\right] . \tag{4}
\end{equation*}
$$

Question 2c continued:

Question 3: 15 points

Elastic Curve for Cantilevered Beam. Figure 4 is a front elevation view of a cantilevered beam carrying two external loads P. EI is constant along the beam structure A-B-C-D.

Figure 4: Cantilevered beam carrying two applied loads P .

Notice that the coordinate system is positioned at point B.
[3a] (2 pts) Draw and label the M/EI diagram.
[3b] (1 pt) Create a qualitative sketch the deflection shape. Indicate where the maximum upwards deflection and maximum downward deflections will occur.
[3c] (4 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right], \tag{5}
\end{equation*}
$$

derive a formula for displacement $y(x)$ within the segment B-C. Clearly indicate the boundary conditions that apply.
[3d] (2 pts) Use your result from part 3c to show that the maximum upward deflection is:

$$
\begin{equation*}
y_{\text {maximum upward }}=\frac{P a b^{2}}{8 E I} \tag{6}
\end{equation*}
$$

[3e] (3 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right], \tag{7}
\end{equation*}
$$

derive a formula for displacement $\mathrm{y}(\mathrm{x})$ within the segment A-B. Clearly indicate the boundary conditions that apply.
[3f] (2 pts) Use your result from part 3e to show that the maximum downwards deflection is:

$$
\begin{equation*}
y_{\text {maximum downward }}=\frac{-P a^{2}}{6 E I}[2 a+3 b] . \tag{8}
\end{equation*}
$$

