Problem 1: If the maximum force that any member can support is 10 kN in tension and 7 kN in

compression, determine the maximum force  $F_P$  can be applied on the following structure (all the angles are  $\pi/3$ ).



Use method of superposition for this linear elastic structure and assume  $F_p = 1 \text{ kN}$ , the vertical reaction forces at A and B are:

$$\sum M_{A}=0, F_{p}*10=V_{B}*10, V_{B}=F_{p}=1 \text{ kN} (\downarrow)$$

$$\Sigma F_y=0$$
,  $-F_P+V_A-V_B=0$ ,  $V_A=2$  kN ( $\uparrow$ )

use method of joint to calculate the force in each member starting from joint E:



Thus, the maximum compression force will result in member AD, AC with a value of  $2\sqrt{3}/3$ ;

The maximum tension force will result in member ED, CB with a value of  $2\sqrt{3}/3$ .

So, the compression controls, and the maximum  $F_P = \frac{7 \text{ kN}}{2\sqrt{3}/3} \cdot 1 \text{ kN} = 6.06 \text{ kN}$ 

Problem 2: Use method of section to solve for the forces in members 1, 2 and 3.



 the structure is symmetric about the center line; thus, the vertical reaction forces are equal with a value of 9/2 kN and there will be no horizontal reaction force due to equilibrium.

(2) Use method of section; draw free body diagram as following assuming forces in member 1, 2 and 3 are in tension:



## Problem 3:

Determine the shear and moment throughout the beam. Draw the shear and moment diagrams for the beam. Draw the deflected shape of the beam.



Reactions:  $R_B=1\ \text{kips}, R_D=5\ \text{kips}$ 



Deflected Shape:



Shear Diagram:  $V_A=0, V_{B,left}=0.375~{\rm kips}, V_{B,right}=-0.625~{\rm kips}, V_C=0.5~{\rm kips}, V_D=5~{\rm kips}$ 



Moment Diagram:  $M_{\rm A}=$  0,  $M_{\rm B}=-0.75$  kips. ft,  $M_{\rm C}=$  0,  $M_{\rm D}=-30$  kips. ft

