Problem 1: If the maximum force that any member can support is 10 kN in tension and 7 kN in compression, determine the maximum force F_{P} can be applied on the following structure (all the angles are $\pi / 3$).

Use method of superposition for this linear elastic structure and assume $\mathrm{F}_{\mathrm{p}}=1 \mathrm{kN}$, the vertical reaction forces at A and B are:

$$
\begin{gathered}
\sum \mathrm{M}_{\mathrm{A}}=0, \mathrm{~F}_{\mathrm{P}}^{*} 10=\mathrm{V}_{\mathrm{B}}^{*} 10, \mathrm{~V}_{\mathrm{B}}=\mathrm{F}_{\mathrm{p}}=1 \mathrm{kN} \\
\sum \mathrm{~F}_{\mathrm{y}}=0,-\mathrm{F}_{\mathrm{P}}+\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0, \mathrm{~V}_{\mathrm{A}}=2 \mathrm{kN}
\end{gathered}
$$

use method of joint to calculate the force in each member starting from joint E :

Thus, the maximum compression force will result in member AD , AC with a value of $2 \sqrt{3} / 3$;
The maximum tension force will result in member ED, CB with a value of $2 \sqrt{3} / 3$.
So, the compression controls, and the maximum $F_{P}=\frac{7 \mathrm{kN}}{2 \sqrt{3} / 3 \mathrm{kN}} \cdot 1 \mathrm{kN}=6.06 \mathrm{kN}$

Problem 2: Use method of section to solve for the forces in members 1, 2 and 3.

(1) the structure is symmetric about the center line; thus, the vertical reaction forces are equal with a value of $9 / 2 \mathrm{kN}$ and there will be no horizontal reaction force due to equilibrium.
(2) Use method of section; draw free body diagram as following assuming forces in member 1,2 and 3 are in tension:

$$
\sum M_{B}=0,1 \times 6+2 \times 3=V_{A} \cdot 6+F_{1} \cdot d_{1}
$$

where, $d_{1}=3$
$\Rightarrow F_{1}=-5 \mathrm{kN}$

$$
\sum M_{D}=0,1 \times 3+F_{3} \cdot d_{2}=V_{A} \cdot 3
$$

where, $d_{2}=\sqrt{3}$
$\Rightarrow F_{3}=\frac{10.5}{\sqrt{3}}=6.06 \mathrm{kN}$

$$
\sum M_{E}=0,1 \times 3=V_{A} \cdot 3+F_{1} \cdot d_{3}+F_{2} \cdot d_{4}
$$

where, $d_{3}=\frac{3}{2}, d_{4}=\frac{3}{2}$

$$
\Rightarrow F_{2}=-2 \mathrm{kN}
$$

Problem 3:

Determine the shear and moment throughout the beam. Draw the shear and moment diagrams for the beam. Draw the deflected shape of the beam.

Reactions: $\mathrm{R}_{\mathrm{B}}=1$ kips, $\mathrm{R}_{\mathrm{D}}=5$ kips

Deflected Shape:

Shear Diagram: $\mathrm{V}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{B}, \mathrm{left}}=0.375 \mathrm{kips}, \mathrm{V}_{\mathrm{B}, \text { right }}=-0.625 \mathrm{kips}, \mathrm{V}_{\mathrm{C}}=0.5 \mathrm{kips}, \mathrm{V}_{\mathrm{D}}=5 \mathrm{kips}$

Moment Diagram: $\mathrm{M}_{\mathrm{A}}=0, \mathrm{M}_{\mathrm{B}}=-0.75$ kips. $\mathrm{ft}, \mathrm{M}_{\mathrm{C}}=0, \mathrm{M}_{\mathrm{D}}=-30$ kips. ft

