ENCE 353 Midterm 2, Open Notes and Open Book

Name:

E-mail (print neatly!):

\qquad

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	10	
3	15	
Total	40	

Question 1: 15 points

Analysis of a Cantilever with Moment Area. Consider the cantilever shown in Figure 1.

Figure 1: Front elevation view of a cantilever.

The cantilever has constant section properties, EI, along its entire length ($\mathrm{a}+\mathrm{b}$). A vertical load $\mathrm{P}(\mathrm{kN})$ is applied at point C .
[1a] (3 pts) Use the method of moment area to show that the vertical deflection of the cantilever at point C is:

$$
\begin{equation*}
y_{C}=\frac{P(a+b)^{3}}{3 E I} \tag{1}
\end{equation*}
$$

[1b] (3 pts) Use the method of moment area to show that the vertical deflection of the cantilever at point B is:

$$
\begin{equation*}
y_{B}=\frac{P a^{2}}{6 E I}[3 b+2 a] . \tag{2}
\end{equation*}
$$

Now suppose that a roller support is inserted below point B as follows:

Figure 2: Front elevation view of a cantilever supported by a roller at point B.
[1c] (3 pts) Show that the vertical support reaction at B is:

$$
\begin{equation*}
V_{b}=\frac{P}{2}\left[\frac{3 b+2 a}{a}\right] . \tag{3}
\end{equation*}
$$

[1d] (2 pts) Hence, derive a simple expression for the bending moment at A.

Finally, let's replace the roller support below point B with a spring.

Figure 3: Cantilever supported by a spring at point B.
[1e] (2 pts) Show that the support reaction, V_{b}, is now given by the equation:

$$
\begin{equation*}
V_{b}\left[\frac{1}{k}+\frac{a^{3}}{3 E I}\right]=\frac{P a^{2}}{6 E I}[3 b+2 a] . \tag{4}
\end{equation*}
$$

[1f] (2 pts) Explain why V_{b} for spring support (i.e., equation 4) is always lower than for roller support (i.e., equation 3).

Question 2: 10 points

Derive Elastic Curve for Beam Deflection. Figure 4 shows a beam structure that carries a uniform load W (N/m) along its length.

Figure 4: Front elevation view of a simple beam.
[2a] (10 pts). Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{-M(x)}{E I}\right] \tag{5}
\end{equation*}
$$

(notice the minus sign on $\mathrm{M}(\mathrm{x})$) and appropriate boundary conditions, show that that vertical beam deflection is given by:

$$
\begin{equation*}
y(x)=-\frac{W x}{24 E I}\left(x^{3}-2 L x^{2}+L^{3}\right) \tag{6}
\end{equation*}
$$

Question 2 continued:

Question 3: 15 points

Analysis of a Three-Pinned Parabolic Arch. This question is inspired by the St. Louis Gateway Arch shown on the class web page. We will compute the vertical and horizontal support reactions due to selfweight the arch alone, and explore the validity of approximations in the analysis along the way.

Since the mathematical details of this problem are a bit complicated, I suggest that you use Wolfram Alpha (see: https://www.wolframalpha.com) for the integration, and read the web page output for hints on suitable simplifications.

Problem Setup. Figure 5 is a front elevation view of a three-pinned parabolic arch that has a profile: $y(x)=k x^{2}$.

Figure 5: Front elevation view of a three-pinned parabolic arch.
The arch has height h, span L, and has self-weight $W_{o}(\mathrm{~N} / \mathrm{m})$ along its profile. Points A, B and C are pins.
[3a] (3 pts) Starting from first principles of geometry, show that the equivalent loading measured in the horizontal direction is:

$$
\begin{equation*}
w(x)=W_{o}\left[1+4 k^{2} x^{2}\right]^{1 / 2} . \tag{7}
\end{equation*}
$$

Show all of your working:

Question 3a continued:
[3b] (3 pts) Show that an approximate value of V_{A} is:

$$
\begin{equation*}
V_{A} \approx \frac{W_{o} L}{2}\left[1+\frac{8}{3}\left(\frac{h}{L}\right)^{2}\right] . \tag{8}
\end{equation*}
$$

Notice that when $\mathrm{h} / \mathrm{L}=0$, the arch becomes a straight beam and $V_{A}=\frac{W_{o} L}{2}$.
[3c] (3 pts) Using Wolfram Alpha, or otherwise, derive a formula for the moments about C due to selfweight of the arch alone, i.e.,

$$
\begin{equation*}
\int_{0}^{L / 2} w(x) x d x \tag{9}
\end{equation*}
$$

All reasonable answers will be accepted.
[3d] (3 pts) With equations 8 and 9 in place, write down and label the equation you would solve to compute the horizontal reaction force at A .
[3e] (3 pts) Now suppose that equation 8 is applied to the St. Louis Gateway Arch (see dimensions on class web page), where $\mathrm{h} / \mathrm{L}=1$. Does the computed value for V_{A} seem reasonable to you, or not? And if not, how you would fix the problem?

Either way, justify your answer.

