Analysis of Truss Structure 000	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary 00

Analysis of Truss Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 23, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Analysis of Truss Structure	Method of Joints 00000	Method of Secti	ons Zero-Force Members	Summary 00
Overview				
 Analysis of Modeling Method of Procedure Method of Procedure 	Truss Structure g Assumptions Joints re and Example Sections re and Example	5 S		

4 Zero-Force Members

• Identification and Examples

Part 2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
•00				

Analysis of Truss Structure

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
○●○	00000		00000000000	00
Modeling Assu	Imptions			

- Pins offer no resistance to moment (i.e., frictionless).
- Truss elements are straight.
- Truss elements can only carry axial forces: tension (T), compression (C).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Loads are only applied at the joints.

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summ
			0000000000	

Zero-Force Members

(Simplify Analysis by removing Zero-Force Members)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary	
000	00000		•••••	00	
Zero-Force Members					

Case 1. If no external load is applied to a joint connecting two bars, the force in both bars is zero.

Case 2. If no external load is applied to a joint connecting three bars, two of which are colinear, then the force in the bar that is not colinear is zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analysis of Truss Structure	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary 00
Zero-Force Me	mbers			

Example 1.

At A and B [1] we have two connecting elements, but Case 1 does not apply because reaction forces V_A and V_B ≠ 0.0.

• But at [2] the pin is connected to three elements, two are colinear, and no external forces. Case II applies.

 Analysis of Truss Structure
 Method of Joints
 Method of Sections
 Zero-Force Members
 Summary

 Zero-Force Members:
 Midterm I, 2016
 Summary
 Summary
 Summary

Example 2.

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

 Analysis of Truss Structure
 Method of Joints
 Method of Sections
 Zero-Force Members
 Summary

 Zero-Force Members:
 Midterm I, 2016

Step-by-Step Procedure:

$$\sum M_A = 0 \rightarrow PL + PL - V_C(2L) = 0 \rightarrow V_C = P.$$
(1)

$$\sum F_y = 0 \rightarrow V_A + V_C = P \rightarrow V_A = 0.$$
 (2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

At pin B:

• A-B and B-C are colinear, no external force at B. Case 2 applies.

At pin E:

• Same argument as pin B. Case 2 applies.

At pin D:

• Element D-E is colinear with applied load. Force C-D = 0.

At pin A:

- $V_A = 0$. H_A is colinear with A-B and B-C.
- Element force A-F is zero.

Simplified Structure (with zero-elements removed):

Zero-Force Members: Midterm I, 2019

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Analysis of Truss Structure Method of Joints Method of Sections Cero-Force Members Summary oc

Zero-Force Members: Midterm I, 2019

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Analysis of Truss Structure Method of Joints Method of Sections Cero-Force Members Summary of Coococo Coo Coococo Coo Coo

Zero-Force Members: Midterm I, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Zero-Force Members: Midterm I, 2019

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の へ ()・

Analysis of Truss Structure Method of Joints Method of Sections Zero-Force Members 0000000000

Zero-Force Members: Midterm I, 2019

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Analysis of Truss Structure 000	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary ●0

Summary

Analysis of Truss Structure	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary ○●
Summary				

Method of Joints vs Method of Sections

- Use method of joints when you need to know element forces throughout the structure. Two equations of equilibrium per joint.
- Method of sections provides a short cut for solution of forces in a few specified bars.

Simplifications

• You can reduce computational effort by taking advantage of symmetries (when they exist) and removing zero-force members.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●