Analysis of Truss Structure 000	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary 00

Analysis of Truss Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 23, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis of Truss Structure 000	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary 00

Types of Truss Structure

(Please download handouts on class web page)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Analysis of Truss Structure 000	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary 00
Types of Truss	Structure			

Many types of truss structure (see handout on class web page):

trough Pratt truss

deck Pratt truss

(pratt truss with curved chord)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
•••				

Analysis of Truss Structure

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
○●○	00000		0000000000	00
Modeling Assu	Imptions			

- Pins offer no resistance to moment (i.e., frictionless).
- Truss elements are straight.
- Truss elements can only carry axial forces: tension (T), compression (C).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Loads are only applied at the joints.

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
○○●	00000		0000000000	00
Modeling Assu	mptions			

Treatment of Uniform Loads

Uniform loads need to be converted into equivalent point loads.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
	00000			

Method of Joints

・ロト・日本・ヨト・ヨー うへの

Analysis of Truss Structure	Method of Joints ○●000	Method of Sections	Zero-Force Members	Summary 00
Method of Join	ts			

Procedure and Assumptions

• Create free-body diagram for each joint and consider equilibrium of forces. Two equations of equilibrium per joint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Bar forces are aligned with the corresponding bars.
- All forces pass through center of joint.

Analysis of Truss Structure 000	Method of Joints ○0●00	Method of Sections	Zero-Force Members	Summary 00
Method of Joint	ts			

Example 1.

Note. Geometry and loading pattern are symmetric about point F.

Solution Strategy. Compute member forces at points B and G. Use symmetry \rightarrow member forces on right-hand side of structure. Verify equilibrium at point F.

Analysis of Truss Structure 000	Method of Joints ○00●0	Method of Sections	Zero-Force Members	Summary 00

Method of Joints

Solution

Only the forces in half the members have to be determined, since the truss is symmetric with respect to *both* loading and geometry.

1-1

Joint A, Fig. 3-20b. We can start the analysis at joint A. Why? The free-body diagram is shown in Fig. 3-20b.

+↑Σ $F_y = 0$; 4 - $F_{AG} \sin 30^\circ = 0$ $F_{AG} = 8 \text{ kN}$ (C) Ans. ⇒Σ $F_x = 0$; $F_{AB} - 8 \cos 30^\circ = 0$ $F_{AB} = 6.93 \text{ kN}$ (T) Ans.

Joint G, Fig. 3-20c. In this case note how the orientation of the x, y axes avoids simultaneous solution of equations.

$$+ \sum \Sigma F_y = 0; F_{GB} - 3 \cos 30^\circ = 0$$
 $F_{GB} = 2.60 \text{ kN (C) Ans}$
 $+ \sum \Sigma F_x = 0; 8 - 3 \sin 30^\circ - F_{GF} = 0$ $F_{GF} = 6.50 \text{ kN (C) Ans}$

Joint B, Fig. 3-20d

$$\begin{array}{l} +\uparrow\Sigma F_{y}=0; \ F_{BF}\sin\,60^{\circ}-2.60\sin\,60^{\circ}=0\\ F_{BF}=2.60\,\text{kN}\,(\text{T}) \qquad \text{Ans.}\\ \Rightarrow\Sigma F_{x}=0; \ F_{BC}+2.60\cos\,60^{\circ}+2.60\cos\,60^{\circ}-6.93=0\\ F_{BC}=4.33\,\text{kN}\,(\text{T}) \qquad \text{Ans.} \end{array}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
000	○○○○●		00000000000	00
Method of Joi	nts			

Results are symmetric. (Structure & Loads are symmetric)

イロト イヨト イヨト

æ

Analysis of Truss Structure

Method of Joints

Zero-Force Members

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Summary 00

Method of Sections

Analysis of Truss Structure	Method of Joints	Method of Sections	Zero-Force Members	Summary
	00000	○●00000	00000000000	00
Method of Sec	tions			

Procedure and Assumptions

• Provides a short cut for solution of forces in a few specified bars.

• Divide truss into free bodies by cutting a section through the truss.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Use statics to solve for individual bar forces.

000	00000	000000	00000000000	00		
Method of Sections						

Procedure and Assumptions

Carefully select locations for evaluation of equations of equilibrium.

For this example:

- Member forces a and b pass through point C, hence, take moments about point C to determine member force c.
- Member forces b and c pass through point G, hence, take moments about point G to determine member force a.

э

Analysis of Truss Structure	Method of Joints 00000	Method of Sections	Zero-Force Members 0000000000	Summary 00			
Method of Sec	Method of Sections						

Example 1.

- nac

Analysis of Truss Structure	Method of Joints 00000	Method of Sections	Zero-Force Members 00000000000	Summary 00
Method of Sec	tions			

Example 2.

000	00000		00000000000000000000000000000000000000	00		
Method of Sections						

Determine forces in liars G.F 6-C

1. Reactions

ヘロト 人間 とくほとくほとう æ

Mothod of So	ctions			
Analysis of Truss Structure	Method of Joints 00000	Method of Sections	Zero-Force Members 0000000000	Summary 00

2. Cut Section Fory - GEMO =0 48.60 - 72.30 - 96 FGEY =0 Fuey=7.5* Fue= 5 lacy= 12.5 k For Tury (Franslate For tury (Franslate Foc: 4 Focy = 10K 181 (+2Mo=0 (Translate Foc topt.6) 48:60 - 72:30 - 72 Fory B > C Fory -18'FOLY =0 48.60 -72.30 -72 (3/5Fec) -18 (4/5 FGC)=0 $\frac{18}{1+24} = \frac{1}{4}$ FGC= 12.5 K X= 48 FGF 7.5 60 - 30 - Fory + Fory = 0 FGFY = 22.5 For= VI7. FGFy= 92.8

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 > 今 Q @ >

Analysis of Truss Structure 000	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary ●0

Summary

Analysis of Truss Structure	Method of Joints 00000	Method of Sections	Zero-Force Members	Summary ○●
Summary				

Method of Joints vs Method of Sections

- Use method of joints when you need to know element forces throughout the structure. Two equations of equilibrium per joint.
- Method of sections provides a short cut for solution of forces in a few specified bars.

Simplifications

• You can reduce computational effort by taking advantage of symmetries (when they exist) and removing zero-force members.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●