Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Statically Determinate Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 17, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Overview

Introduction

- Need for Mathematical Test
- Benefits of Indeterminacy
- 2 Statical Determinacy of Trusses
 - Formulae and Examples
- **3** Statical Determinacy of Planar Structures
- Indeterminacy of Beams
- 5 Indeterminacy of Frames
 - Tree and Ring Methods

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
• 0 000				

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction Statical	Determinacy of Trusses Statio	al Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
00000 0000	0000	0000		

Quick Review

Real-World and Idealized Abstractions

Statically Determinate Structure

• Can use statics to determine reactions and distribution of element-level forces.

Statically Indeterminate Structure

• Statics alone are not enough to find reactions. Need to find additional information (e.g., material behavior).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

IntroductionStatical Determinacy of TrussesStatical Determinacy of Planar StructuresIndeterminacy of BeamsIndeterminacy of one00000000000000000000000000000000000

Need for Mathematical Test

Three cases to consider:

Test Structure A: Determinate.

Can compute:

- Support reactions.
- Member forces.

Test Structure B: Indeterminate.

Can compute:

- Support reactions. \checkmark
- Member forces. X

A D > A P > A B > A B >

э

Need for Mathematical Test

Test Structure C: Unstable.

- Can compute:
 - Support reactions. 🗡
 - Member forces. X

Key Points:

- Intuition on notions of determinacy will not scale. We need a mathematical test to classify structures.
- Initial inclination is to design for A and avoid B it's complicated and probably won't work. Unless, there are benefits to B?

Benefits of Indeterminacy

Generally, indeterminate structures are stiffer than determinate structures.

Materials such as steel/concrete are displacement constrained.

For a maximum allowable displacement (\triangle_{max}) , the load carrying capacity of indeterminate structures (P_i) is greater than determinate structures (P_d) .

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
	0000			

Statical Determinacy of Trusses

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction Statical	Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
00000 0000				

Trusses

Formulae: If the truss has *j* joints \rightarrow 2*j* equations of equilibrium.

$$\sum F_x = 0, \quad \sum F_y = 0. \tag{1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Unknowns: No of reactions r, and no of member forces m.

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of Ococoo

Determinacy of Trusses

Test covers three categories:

- Truss is statically determinate: m + r = 2j.
- If $m + r < 2j \leftarrow$ Truss is unstable.
- If $m + r > 2j \leftarrow$ Truss is statically indeterminate.

Note. Tests are necessary but not sufficient.

For our three test cases:

Test Structure A: r = 3, m = 7, and j = 5.

• $m + r - 2j = 0 \rightarrow$ statically determinate.

Test Structure B: r = 3, m = 8, and j = 5.

• $m + r - 2j > 0 \rightarrow$ statically indeterminate.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of occord 00000 0000 000000 000000 000000 000000

Determinacy of Trusses

Test Structure C: r = 3, m = 7, and j = 5.

• $m + r - 2j = 0 \rightarrow$ statically determinate?

Bottom Line:

• Last test says statically determinate, but actually the test is faulty because structure is unstable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
		•000000		

Statical Determinacy of Planar Structures

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of Oo0000 000000 000000

Planar Frame Structures

Three equations of equilibrium for each free body diagram:

If structure has n members and r unknown reactions,

Test:

- If $r = 3n \rightarrow$ statically determinate.
- If r > 3n → statically indeterminate.
- If $r < 3n \rightarrow$ structure is unstable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
		000000		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Planar Structures

$$n = 1. r = \{H_A, V_A, V_B\} = 3.$$

Test: r - $3n = 0 \rightarrow$ statically determinate.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
		000000		

Planar Structures

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $n = 1. r = \{H_A, V_A, V_B, V_C\} = 4.$

Test: r - $3n = 1 > 0 \rightarrow$ statically indeterminate.

Planar Frame Structures

Two members: n = 2.

No reactions $r = \{H_A, V_A, M_A, \cdots, V_E\} = 9.$

Test: $r - 3n = 3 > 0 \rightarrow$ statically indeterminate to degree 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Planar Frame Structures

Counter Example 4. Example demonstrates test is necessary but not sufficient.

Three members: n = 3. No reactions $r = \{H_A, V_A, \cdots, H_E\} = 9$.

Test: r - $3n = 0 \rightarrow$ statically determinate.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of Oooooo

Planar Frame Structures

But this configuration is also a mechanism, i.e.,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion: Test is necessary but not sufficient!

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
			00000	

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Computing Degree of Indeterminacy

Definition. The degree of indeterminacy is equal to the number of additional equations needed to solve a problem uniquely.

Additional info:

- Compatibility of deformations this is the force method.
- Equilibrium of forces this is the displacement method.

Beams: $\hat{i} = f - 3 - r$, where:

- f = total no of external forces,
- r = total no of releases (hinges),
- 3 = no of equations from statics.

Example 1. Supported Cantilever Beam.

We have:

Need to release two restraints to create determinate structures, e.g.,

Example 2. Fixed-Fixed Beam.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We have: r = 0, $f = \{V_A, H_A, M_A, V_B, H_B, M_B\} = 6$. $\hat{i} = f - 3 - r = 3$.

Example 3. Fixed-Fixed Beam + Hinge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We have: r = 1,

 $f = \{V_A, H_A, M_A, V_B, H_B, M_B\} = 6.$ $\hat{i} = f - 3 - r = 2.$

Example 4. Two-Span Beam.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have: r = 0, $f = \{V_A, H_A, V_B, H_B, V_C, H_C\} = 6$. $\hat{i} = f - 3 - r = 3$.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				00000

Indeterminacy of Frames

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tree Method

Approach: Systematically release redundant forces until trees are formed.

Formula: $\hat{i} = f - 3t$, where:

- f = no of external forces,
- t = no of trees.

Constraints: Frame cannot have internal releases (no loops in trees).

Trees:

- A tree has one root.
- A tree cannot have a closed loop branch.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				00000

Tree Method

Example 1a.

Example 1b.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				000000

Tree Method

Example 2.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				000000

Ring Method

Formula: $\hat{i} = 3n - r$, where:

- n = no of rings.
- r = no of releases (each ring has 3 degrees of indeterminacy).

Example 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction S	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
	0000			00000

Ring Method

Example 2.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Stability

Introduction Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Stability

Stability of Dynamical Systems

Instability occurs when some of the system outputs (e.g., displacement) can increase without bounds. In structural analysis, equilibrium of displacements corresponds to a minimum energy state.

Instability of Structures:

- External Instability. When support reactions are either concurrent forces about a point or parallel.
- Internal Instability. When a mechanism exists.

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of Ooooo

External Instability

Example 1: Reaction forces are parallel.

Three equations of equilibrium but only two reactions (r < 3n).

Example 2: Three parallel reaction forces

Three equations of equilibrium and three reactions (r = 3n). Still unstable.

Example 3. Reaction forces are concurrent about point B.

Example 4. Reaction forces are concurrent.

Internal Instability

Example 5. Structural configuration forms a pendulum mechanism.

Three members: n = 3. No reactions $r = \{H_A, V_A, \cdots, H_E\} = 9$.

Test: r - $3n = 0 \rightarrow$ statically determinate.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of Company

Internal Instability

Example 6: Internal Mechanism.

Example 7: Sometime internal mechanism are hard to identify.

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

Relating Stability to Linear Matrix Equations

Aside: If we compute the reactions and then systematically write the equations of equilibrium for each joint $\rightarrow 2j$ equations, which can be put in matrix form:

$$[A] [X] = [B]. (2)$$

Here,

- X is a vector of truss element forces.
- A is a matrix of geometry and boundary conditions.
- B is a vector of applied loads.

When the system is statically determinate we can write:

$$[A] [X] = [B] \to [X] = [A^{-1}] [B].$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Relating Stability to Linear Matrix Equations

Equations 3 only exist when $[A^{-1}]$ exists.

And this requires that the individual equations be linearly independent.

In Example 2, $[A^{-1}]$ does not exist because the reactions are co-linear, meaning that V_A can be written as a linear combination of V_B and V_C , i.e.,

$$\sum F_y = 0 \rightarrow V_A + V_B + V_C = 0. \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

Equations in Two Dimensions

Three Types of Solutions:

- Unique solution when two lines meet at a point.
- No solutions when two lines are parallel but not overlapping.
- Multiple solutions when two lines are parallel and overlap.

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

Equations in Three Dimensions

Also Three Types of Solutions:

Each equation corresponds to a plane in three dimensions (e.g., think walls, floor and ceiling in a room).

- Unique solution when three planes intersect at a corner point.
- Multiple solutions where three planes overlap or meet along a common line.
- No solutions when three planes are parallel, but distinct, or pairs of planes that intersect along a line (or lines).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000

Equations in Three Dimensions

One Solution/Infinite Solutions:

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

Equations in Three Dimensions

No Solutions:

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで