Statically Determinate Structures

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 353, Fall Semester 2020

September 17, 2021
Overview

1. Introduction
 - Need for Mathematical Test
 - Benefits of Indeterminacy

2. Statical Determinacy of Trusses
 - Formulae and Examples

3. Statical Determinacy of Planar Structures

4. Indeterminacy of Beams

5. Indeterminacy of Frames
 - Tree and Ring Methods

6. Stability

Part 2
Introduction
Need for Mathematical Test

Three cases to consider:

Test Structure A: Determinate.

Can compute:
- Support reactions. ✓
- Member forces. ✓

Test Structure B: Indeterminate.

Can compute:
- Support reactions. ✓
- Member forces. ⬗
Need for Mathematical Test

Test Structure C: Unstable.

Can compute:
- Support reactions. ✗
- Member forces. ✗

Key Points:
- Intuition on notions of determinacy will not scale. We need a mathematical test to classify structures.
- Initial inclination is to design for A and avoid B – it’s complicated and probably won’t work. Unless, there are benefits to B?
Indeterminacy of Beams
Computing Degree of Indeterminacy

Definition. The degree of indeterminacy is equal to the number of additional equations needed to solve a problem uniquely.

Additional info:
- Compatibility of deformations – this is the force method.
- Equilibrium of forces – this is the displacement method.

Beams: \(\hat{i} = f - 3 - r \), where:
- \(f \) = total no of external forces,
- \(r \) = total no of releases (hinges),
- \(3 \) = no of equations from statics.
Example 1. Supported Cantilever Beam.

We have:

\[r = 0, \]
\[f = \{V_A, H_A, \ldots, V_B\} = 5. \]
\[\hat{i} = f - 3 - r = 2. \]

Need to release two restraints to create determinate structures, e.g.,
Example 2. Fixed-Fixed Beam.

We have: $r = 0,$

$f = \{ V_A, H_A, M_A, V_B, H_B, M_B \} = 6.$

$\hat{i} = f - 3 - r = 3.$
Example 3. Fixed-Fixed Beam + Hinge.

We have: \(r = 1 \),

\[f = \{ V_A, H_A, M_A, V_B, H_B, M_B \} = 6. \]

\[\hat{i} = f - 3 - r = 2. \]
Example 4. Two-Span Beam.

We have: \(r = 0, \)
\[
\]
\[
\hat{i} = f - 3 - r = 3.
\]
Indeterminacy of Frames
Approach: Systematically release redundant forces until trees are formed.

Formula: \(\hat{i} = f - 3t \), where:
- \(f \) = no of external forces,
- \(t \) = no of trees.

Constraints: Frame cannot have internal releases (no loops in trees).

Trees:
- A tree has one root.
- A tree cannot have a closed loop branch.
Tree Method

Example 1a.

Example 1b.
Tree Method

Example 2.

\[\begin{align*}
\text{Cut} \\
\text{Tree 1} & \quad f = 3 \\
\text{Tree 2} & \quad f = 3 \\
& \\
\hat{i} & = 12 - 3 \times 2 = 6.
\end{align*} \]

Example 2.

- Tree 1: \(f = 3 \)
- Tree 2: \(f = 3 \)

\(f = 12 \)
\(t = 2 \)
\(\hat{i} = 12 - 3 \times 2 = 6 \)
Ring Method

Formula: \(\hat{i} = 3n - r \), where:
- \(n \) = no of rings.
- \(r \) = no of releases (each ring has 3 degrees of indeterminacy).

Example 1.

\[\hat{i} = 6 - 1 = 5. \]
Example 2.

\[n = 4. \]
\[r = 3 \]
\[\hat{i} = 3 \times 4 - 3 = 9. \]