Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Statically Determinate Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 17, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Overview

- Need for Mathematical Test
- Benefits of Indeterminacy
- 2 Statical Determinacy of Trusses
 - Formulae and Examples
- 3 Statical Determinacy of Planar Structures
- Indeterminacy of Beams
- Indeterminacy of Frames
 Tree and Ring Methods

Part 2

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
0000				

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of Construction

Need for Mathematical Test

Three cases to consider:

Test Structure A: Determinate.

Can compute:

- Support reactions.
- Member forces.

Test Structure B: Indeterminate.

Can compute:

- Support reactions. ✓
- Member forces. X

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Need for Mathematical Test

Test Structure C: Unstable.

- Can compute:
 - Support reactions. 🗡
 - Member forces. X

Key Points:

- Intuition on notions of determinacy will not scale. We need a mathematical test to classify structures.
- Initial inclination is to design for A and avoid B it's complicated and probably won't work. Unless, there are benefits to B?

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
			00000	

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Computing Degree of Indeterminacy

Definition. The degree of indeterminacy is equal to the number of additional equations needed to solve a problem uniquely.

Additional info:

- Compatibility of deformations this is the force method.
- Equilibrium of forces this is the displacement method.

Beams: $\hat{i} = f - 3 - r$, where:

- f = total no of external forces,
- r = total no of releases (hinges),
- 3 = no of equations from statics.

Example 1. Supported Cantilever Beam.

We have:

Need to release two restraints to create determinate structures, e.g.,

Indeterminacy of Beams

Example 2. Fixed-Fixed Beam.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We have: r = 0, $f = \{V_A, H_A, M_A, V_B, H_B, M_B\} = 6$. $\hat{i} = f - 3 - r = 3$.

Example 3. Fixed-Fixed Beam + Hinge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We have: r = 1,

 $f = \{V_A, H_A, M_A, V_B, H_B, M_B\} = 6.$ $\hat{i} = f - 3 - r = 2.$

Example 4. Two-Span Beam.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have: r = 0, $f = \{V_A, H_A, V_B, H_B, V_C, H_C\} = 6$. $\hat{i} = f - 3 - r = 3$.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				00000

Indeterminacy of Frames

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tree Method

Approach: Systematically release redundant forces until trees are formed.

Formula: $\hat{i} = f - 3t$, where:

- f = no of external forces,
- t = no of trees.

Constraints: Frame cannot have internal releases (no loops in trees).

Trees:

- A tree has one root.
- A tree cannot have a closed loop branch.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction Statical Determinacy of Truss	es Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
			00000

Tree Method

Example 1a.

Example 1b.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				000000

Tree Method

Example 2.

IntroductionStatical Determinacy of TrussesStatical Determinacy of Planar StructuresIndeterminacy of BeamsIndeterminacy of Comparison00000000000000000000000000000000000

Ring Method

Formula: $\hat{i} = 3n - r$, where:

- n = no of rings.
- r = no of releases (each ring has 3 degrees of indeterminacy).

Example 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction Statical Determina	acy of Trusses Statical De	terminacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
				00000

Ring Method

Example 2.

