Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Statically Determinate Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 17, 2020

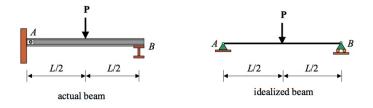
Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o

Overview

Introduction

- Need for Mathematical Test
- Benefits of Indeterminacy
- Statical Determinacy of Trusses
 Formulae and Examples
- 3 Statical Determinacy of Planar Structures
- Indeterminacy of Beams
- Indeterminacy of FramesTree and Ring Methods

Part 1


Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
0000				

Introduction

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
00000				

Quick Review

Real-World and Idealized Abstractions

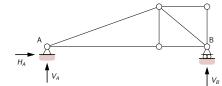
Statically Determinate Structure

• Can use statics to determine reactions and distribution of element-level forces.

Statically Indeterminate Structure

• Statics alone are not enough to find reactions. Need to find additional information (e.g., material behavior).

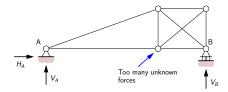
 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of Construction

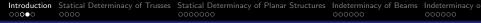

Need for Mathematical Test

Three cases to consider:

Test Structure A: Determinate.

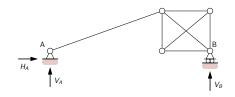
Can compute:


- Support reactions.
- Member forces.


Test Structure B: Indeterminate.

Can compute:

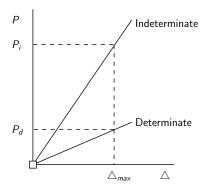
- Support reactions. ✓
- Member forces. X


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Need for Mathematical Test

Test Structure C: Unstable.

- Can compute:
 - Support reactions. 🗡
 - Member forces. X


Key Points:

- Intuition on notions of determinacy will not scale. We need a mathematical test to classify structures.
- Initial inclination is to design for A and avoid B it's complicated and probably won't work. Unless, there are benefits to B?

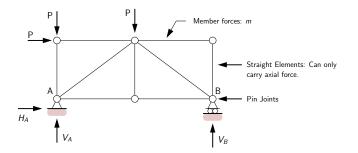
 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

Benefits of Indeterminacy

Generally, indeterminate structures are stiffer than determinate structures.

Materials such as steel/concrete are displacement constrained.

For a maximum allowable displacement (\triangle_{max}) , the load carrying capacity of indeterminate structures (P_i) is greater than determinate structures (P_d) .


Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
	0000			

Statical Determinacy of Trusses

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

Introduction Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
00000 0000			

Trusses

Formulae: If the truss has *j* joints \rightarrow 2*j* equations of equilibrium.

$$\sum F_x = 0, \quad \sum F_y = 0. \tag{1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Unknowns: No of reactions r, and no of member forces m.

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of Oo0000

Determinacy of Trusses

Test covers three categories:

- Truss is statically determinate: m + r = 2j.
- If $m + r < 2j \leftarrow$ Truss is unstable.
- If $m + r > 2j \leftarrow$ Truss is statically indeterminate.

Note. Tests are necessary but not sufficient.

For our three test cases:

Test Structure A: r = 3, m = 7, and j = 5.

• $m + r - 2j = 0 \rightarrow$ statically determinate.

Test Structure B: r = 3, m = 8, and j = 5.

• $m + r - 2j > 0 \rightarrow$ statically indeterminate.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of Ococo ococo

Determinacy of Trusses

Test Structure C: r = 3, m = 7, and j = 5.

• $m + r - 2j = 0 \rightarrow$ statically determinate?

Bottom Line:

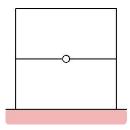
• Last test says statically determinate, but actually the test is faulty because structure is unstable.

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of occord

 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000

Statical Determinacy of Planar Structures

Introduction Statical Determinacy of Trusses Statical Determinacy of Planar Structures Indeterminacy of Beams Indeterminacy of Ococoo

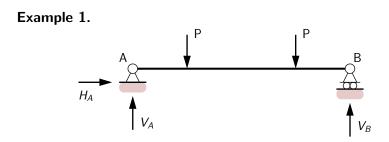

Planar Frame Structures

Three equations of equilibrium for each free body diagram:

If structure has n members and r unknown reactions,

Test:

- If $r = 3n \rightarrow$ statically determinate.
- If r > 3n → statically indeterminate.
- If $r < 3n \rightarrow$ structure is unstable.

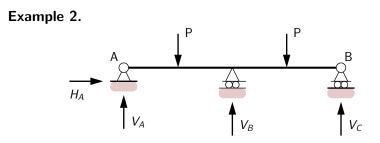


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
		000000		

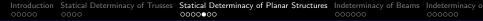
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Planar Structures

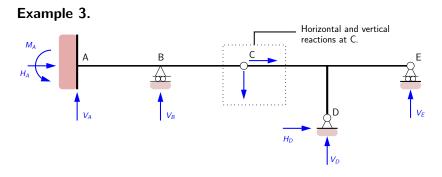

$$n = 1$$
. $r = \{H_A, V_A, V_B\} = 3$.

Test: r - $3n = 0 \rightarrow$ statically determinate.

Introduction	Statical Determinacy of Trusses	Statical Determinacy of Planar Structures	Indeterminacy of Beams	Indeterminacy o
		000000		


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Planar Structures



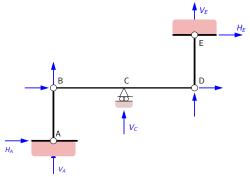
 $n = 1. r = \{H_A, V_A, V_B, V_C\} = 4.$

Test: r - $3n = 1 > 0 \rightarrow$ statically indeterminate.

Planar Frame Structures

Two members: n = 2.

No reactions $r = \{H_A, V_A, M_A, \cdots, V_E\} = 9.$

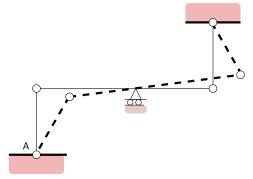

Test: r - $3n = 3 > 0 \rightarrow$ statically indeterminate to degree 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Planar Frame Structures

Counter Example 4. Example demonstrates test is necessary but not sufficient.

Three members: n = 3. No reactions $r = \{H_A, V_A, \cdots, H_E\} = 9$.


Test: r - $3n = 0 \rightarrow$ statically determinate.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

 Introduction
 Statical Determinacy of Trusses
 Statical Determinacy of Planar Structures
 Indeterminacy of Beams
 Indeterminacy of Constraints

Planar Frame Structures

But this configuration is also a mechanism, i.e.,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion: Test is necessary but not sufficient!