Introduction	Connecting Mechanics to Analysis	Connecting Analysis to Structural Design	Theory of Structures	Simplifying Assum

Introduction to Structural Analysis

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 3, 2020

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Connecting Mechanics to Analysis	Connecting Analysis to Structural Design	Theory of Structures	Simplifying Assurr

Overview

- Course Introduction
- 2 Connecting Mechanics to Analysis
- 3 Connecting Analysis to Structural Design
 - Connecting Analysis to Structural Design
- Theory of Structures
 - Statically Determinate and Indeterminate Structures

5 Simplifying Assumptions

• Small Displacements, Linear Systems Behavior

Part 2

- 日本 本語 本 本 田 本 王 本 田 本

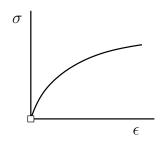
 Introduction
 Connecting Mechanics to Analysis
 Connecting Analysis to Structural Design
 Theory of Structures
 Simplifying Assum

 •000
 •0000
 •00000
 •00000
 •000000
 •000000

Introduction

Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design Theory of Structures Simplifying Assum

Definition of Structural Mechanics


Mechanics. Branch of science that deals with response of matter to forces.

Civil Engineering:

- Structural mechanics (σ ε): material displacement.
- Geomechanics (σ ε): pressure, temperature, displacements.
- Fluid mechanics (σ ε): pressure, velocities.

Other domains:

 Biomechanics (σ - ε): eye, heart, biological systems that grow!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design Theory of Structures Simplifying Assum

Connecting Mechanics to Analysis

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pathway from Mechanics to System-Level Behavior

From material-level mechanics to building-system response:

Material ^{integrate}	Section integrate Response	Beam assemble Response	Building System Response
Stress $\sigma(x, y)$ Strain $\epsilon(x, y)$	Curvature $\phi(x) = \left[\frac{M(x)}{El}\right]$	Deflection y(x) Slope dy/dx	

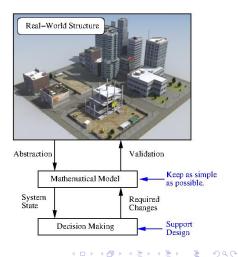
How will the integration work?

- Analytical Procedures: The math needs to be "nice" ...
- Numerical Proedures: Compute approximate solutions \rightarrow linear algebra, numerical algorithms, structural analysis and finite elements.

 Introduction
 Connecting Mechanics to Analysis
 Connecting Analysis to Structural Design
 Theory of Structures
 Simplifying Assum

 0000
 00000
 000000
 000000
 0000000
 0000000

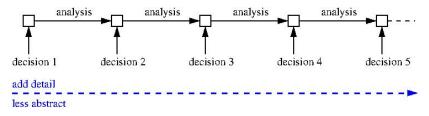
Connecting Analysis to Design


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design 00000 Theory of Structures Simplifying Assum

Framework for Analysis and Design

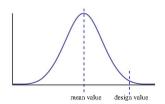
Creating an Analysis Model


- Abstract from consideration details not needed for decision making.
- Validate that model captures essential aspects of real-world behavior.
- Decision making needed for design.
- Perfect is the enemy of good. Mathematical model and decision making does not need to be perfect in order to be useful.

Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design Ococo Simplifying Assum

Connecting Analysis to Design

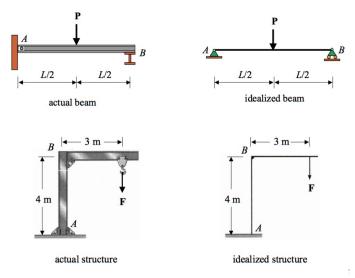
Structural Design. Sequence of analyses punctuated by decision making.



- Determine types and magnitudes of loads and forces acting on the structure.
- Determine context of project: geometric constraints, architectural constraints, geological conditions, urban regulations, cost, schedule, etc.

Connecting Analysis to Design

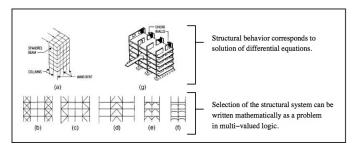
- Generate structural system alternatives.
- Analyze one or more of the alternatives.
- Select and perform detailed design.
- Implement/build.


Analysis and decision making procedures complicated by uncertainties in loading, material properties, etc. State-of-the-art methods compensate for uncertainties with safety factors.

New structural systems may also require an experimental testing phase to verify behavior and achievable system performance. Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design 00000 Simplifying Assum

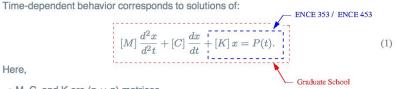
Connecting Analysis to Design

Real-World and Idealized Abstractions


æ

Connecting Analysis to Design

Formal Approaches to Behavior Modeling and Decision Making


Appropriate formalisms depend on the design domain of interest.

- Physical aspects of behavior are often characterized by differential equations.
- Logical aspects of system design can be captured by binary and multi-valued logic variables and boolean equations.

Connecting Analysis to Design

Structural Behavior

- M, C, and K are (n × n) matrices,
- x is a (n × 1) vector of displacements,
- P(t) is a vector of external loads applied to the structural degrees of freedom.

Design Parameters

• Selection of the best structural system (e.g., braced system) from a list of options.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Size of the beams, columns, and bracing (if required).

Theory of Structures

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

IntroductionConnecting Mechanics to AnalysisConnecting Analysis to Structural DesignTheory of StructuresSimplifying Assum00000000000000000000000000000

Statically Determinate Structures

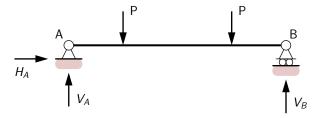
Definition. Can use statics to determine reactions and distribution of element-level forces. Determinacy is not affected by details of loading.

Two-Dimensional Problems

$$\sum F_x = 0, \ \sum F_y = 0, \ \sum M_z = 0.$$
 (1)

Three-Dimensional Problems

$$\sum F_x = 0, \ \sum F_y = 0, \ \sum F_z = 0.$$
 (2)

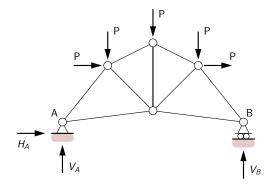

$$\sum M_x = 0, \ \sum M_y = 0, \ \sum M_z = 0.$$
 (3)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design **Theory of Structures** Simplifying Assum

Statically Determinate Structures

Example 1. Simply supported beam:

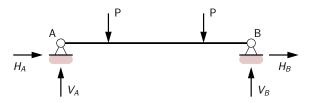


Three equations of equilibrium: $\sum F_x = 0$, $\sum F_y = 0$, $\sum F_z = 0$. Three unknowns: V_A , H_A and $V_B \rightarrow$ Can use statics to solve.

うしん 前 ふぼやふぼやふむや

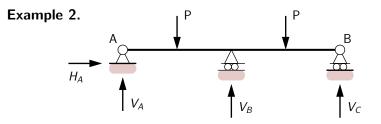
Statically Determinate Structures

Example 2. Small truss structure:


- Use statics to find support reactions V_A , H_A and V_B .
- Compute member forces by considering equilibrium of individual joints.

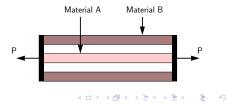
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Statically Indeterminate Structures


Definition. Statics alone are not enough to find reactions. Need to find additional information (e.g., material behavior).

Example 1. Simply supported beam:

Three equations of equilibrium: $\sum F_x = 0$, $\sum F_y = 0$, $\sum F_z = 0$. Four unknowns: V_A , H_A , V_B and $H_B \rightarrow 4 > 3 \rightarrow$ statically indeterminate to degree 1. Introduction Connecting Mechanics to Analysis Connecting Analysis to Structural Design Ococo


Statically Indeterminate Structures

Three equations of equilibrium. Four unknowns: V_A , H_A , V_B and $V_C \rightarrow 4 > 3 \rightarrow$ statically indeterminate to degree 1.

Example 3. Multi-material Truss Element.

Material behavior defined by $\sigma - \epsilon$ characteristics. Need to maintain geometric compatibility.

