Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples

Analysis of Beam Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 3, 2020

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relationship between Shear Force and Bending Moment

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relationship between Shear Force and Bending Moment

Basic Questions

- Are V(x) and M(x) independent? No!
- Under what conditions does a dependency relationship exist?

Strategy

- Introduce relavant mathematics.
- Extract a thin section from a beam and examine its equilibrium.
- See where the mechanics takes us!

Connection to Mechanic 00000 Examples 0000000000

Test Problem for Derivation of Equations

Connection to Mechanics

Derivation of Equations

Hence,

$$\frac{dV}{dx} + w(x) = 0 \leftarrow \text{gradient of shear force equals -}w(x). \quad (15)$$

Part 2: $\sum M_o = 0$ (anticlockwise +ve)

$$-V(x)dx - M(x) + M(x + dx) + w(x)dx \cdot \frac{dx}{2} = 0$$
 (16)

Note:

- The term w(x)dx is the vertical load acting on the element.
- The term dx/2 is the distance from O to the centroid of loading.

Types of Beam Structure Co 0000000 00

Connection to Mechanics

Derivation of Equations

From the Taylor Series expansion:

$$M(x + dx) = M(x) + \frac{dM}{dx}dx + O(dx^2)$$
(17)

Plugging equation 17 into 16 and ignoring terms $O(dx^2)$ and higher:

$$V(x) = \frac{dM}{dx} \leftarrow \text{shear force} = \text{gradient of bending moment.}$$
 (18)

Note. Equation 18 only applies when the derivatives of M(x) with respect to x exist.

Connection to Mechanic

Examples 0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Derivation of Equations

Illustrative Example

Connection to Mechanics

Shear Force and Bending Moment

Interpretation. Consider an interval [a, b] on a beam:

$$dV = -w(x)dx \rightarrow \int_{a}^{b} dV = -\int_{a}^{b} w(x)dx = V(b) - V(a).$$
 (19)

Key Point: Change in shear force between points a and b = total loading within interval.

$$dM = V(x)dx \rightarrow \int_a^b dM = \int_a^b V(x)dx = M(b) - M(a). \quad (20)$$

Key Point: Change in moment between points a and b = area under the shear force diagram.

Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples
			••••••

Examples

Connection to Mechanic 00000 Relationship between Shear Force and Bending Moment

Examples 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Shear Force and Bending Moment

Example 1.

Check Shear Loading (a = 0, b = L):

$$V(b) - V(a) = V(L) - V(o) = -wL = -\int_0^L w_o dx.$$
 (21)

Connection to Mechanics

Examples 000000000

Shear Force and Bending Moment

Check Relationship between Shear and Bending Moment:

$$V(x) = \frac{dM(x)}{dx} = w_o(L - x).$$
⁽²²⁾

For a = 0 and b = L we expect:

$$\int_0^L V(x) dx = w_o \int_0^L () dx = M(L) - M(0).$$
 (23)

For a general value x:

$$M(x) = w_o \int_x^L (L-s) ds = w_o L x - \frac{1}{2} w_o x^2 + A.$$
 (24)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Connection to Mechanics

Examples 000000000

Shear Force and Bending Moment

Apply Boundary Conditions:

$$M(L) = 0 \to A = -\frac{1}{2}wL^2.$$
 (25)

Hence,

$$M(x) = wLx - \frac{1}{2}wx^2 - \frac{1}{2}wL^2 = -\frac{1}{2}w(L-x)^2.$$
 (26)

Check Moment at Boundary Conditions:

•
$$M(L) = wL^2 - \frac{1}{2}2wL^2 = 0. \checkmark$$

• $M(0) = -\frac{1}{2}wL^2. \checkmark$

Connection to Mechanics

Examples 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Shear Force and Bending Moment

Physical Interpretation

For the extracted element:

$$\sum F_{y}(x) = 0 \to V(x) = w_{o}(L-x).$$
 (27)

Similarly,

Connection to Mechanic

Relationship between Shear Force and Bending Moment

Examples 00000000000

Shear Force and Bending Moment Diagrams

Relationship between Shear Force and Bending Moment

Examples 0000000000

Shear Force and Bending Moment

Example 2.

Connection to Mechanics

Examples 00000000000

Shear Force and Bending Moment

Bending Moment at x = L/2 (extract substructure):

Taking moments:

$$M(L/2) = \underbrace{\frac{w_o L}{2}}_{reaction} \frac{L}{2} - \underbrace{\frac{w_o L}{2}}_{loading \ centroid} \underbrace{\frac{L}{4}}_{entroid} = \frac{w_o L^2}{8}.$$
 (29)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Connection to Mechanics

Shear Force and Bending Moment

Equation for M(x)?

We have:

- Axis of symmetry at x = L/2.
- M(x) will have roots at x = 0 and x = L.

Hence, let M(x) = Ax(x - L), then use midpoint moment to determine A:

$$M(L/2) = A \frac{L}{2} \left(\frac{-L}{2}\right) - > A = -\frac{w_o}{2}.$$
 (30)

Thus,

$$M(x) = \frac{w_o}{2} x (L - x).$$
 (31)

Connection to Mechanie

Relationship between Shear Force and Bending Moment

Examples 0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Shear Force and Bending Moment

Example 3.

