Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples

Analysis of Beam Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

September 3, 2020

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Q1. What is the relationship between inputs and outputs?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Decisions will be based on estimates of outputs.

Q2. What is the relationship among the outputs? Are they dependent?

We will need to work with a chain of dependencies.

Q3. What is the relationship between V(x) and M(x)? Are they independent? No! We will see: $V(x) = \frac{dM(x)}{dx}$, but not always true!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relationship between Shear Force and Bending Moment

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relationship between Shear Force and Bending Moment

Basic Questions

- Are V(x) and M(x) independent? No!
- Under what conditions does a dependency relationship exist?

Strategy

- Introduce relavant mathematics.
- Extract a thin section from a beam and examine its equilibrium.
- See where the mechanics takes us!

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 0000000000

Mathematical Preliminaries

Taylor Series Expansion. Let y = f(x) be a smooth differentiable function.

Given f(x) and derivatives f'(a), f''(a), f'''(a), etc, the purpose of Taylor's series is to estimate f(x + h) at some distance h from x.

Connection to Mechanics

Mathematical Preliminaries

The Taylor series is as follows:

$$f(x+h) = \sum_{k=0}^{\infty} \frac{f^{k}(x)}{k!} h^{k} = f(x) + f'(x)h + \frac{f''(x)}{2!}h^{2} + \frac{f'''(x)}{3!}h^{3} + \cdots$$
(5)

For a Taylor series approximation containing (n + 1) terms

$$f(x+h) = \sum_{k=0}^{k=n} \frac{f^k(x)}{k!} h^n + O(h^{(n+1)})$$
(6)

The big-O notation indicates how quickly the error will change as a function of h, e.g., $O(h^2) \rightarrow$ nagnitude of error proportional to h squared.

Examples 0000000000

Mathematical Preliminaries

Finite Difference Derivatives. Truncating equation 6 after two terms gives:

$$f(x+h) = f(x) + f'(x)h + O(h^2).$$
 (7)

A simple rearrangement of equation 7 gives:

$$\frac{dy}{dx} = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right].$$
 (8)

Similarly, we require:

$$\frac{dy}{dx} = \lim_{h \to 0} \left[\frac{f(x) - f(x - h)}{h} \right].$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In order for the derivative to exist, equations 8 and 9 need to be the same!

Connection to Mechanics

Examples 0000000000

Mathematical Preliminaries

Simple Example. Let $y = x^2$.

$$\frac{dy}{dx} = \lim_{h \to 0} \left[\frac{(x+h)^2 - x^2}{h} \right] = \lim_{h \to 0} \left[2x + h \right] = 2x.$$
(10)

Home Exercise. Use first principles to find dy/dx when:

$$y(x) = (x^2 - 4x + 3)^2$$
 (11)

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

Counter Example. y(x) = |x| is not differentiable at x = 0.

Connection to Mechanic 00000 Examples 0000000000

Test Problem for Derivation of Equations

 Types of Beam Structure
 Connection to Mechanics
 Relationship between Shear Force and Bending Moment
 Examples

 Observation of Equations
 Observation
 Observation
 Observation
 Observation

Part 1: Equilibrium in Vertical Direction:

$$\sum F_{y} = 0 \; \to \; V(x) - V(x + dx) - w(x)dx = 0 \qquad (12)$$

From the Taylors series expansion:

$$V(x+dx) = V(x) + \frac{dV}{dx}dx + O(dx^2)$$
(13)

Plugging equation 13 into 12 and ignoring higher-order terms:

$$\sum F_{y} = 0 \rightarrow V(x) - \left[V(x) + \frac{dV}{dx}dx\right] - w(x)dx = 0 \quad (14)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Connection to Mechanics

Derivation of Equations

Hence,

$$\frac{dV}{dx} + w(x) = 0 \leftarrow \text{gradient of shear force equals -w(x)}. (15)$$

Part 2: $\sum M_o = 0$ (anticlockwise +ve)

$$-V(x)dx - M(x) + M(x + dx) + w(x)dx \cdot \frac{dx}{2} = 0$$
 (16)

Note:

- The term w(x)dx is the vertical load acting on the element.
- The term dx/2 is the distance from O to the centroid of loading.

Types of Beam Structure C 0000000 c

Connection to Mechanics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Derivation of Equations

From the Taylor Series expansion:

$$M(x + dx) = M(x) + \frac{dM}{dx}dx + O(dx^2)$$
(17)

Plugging equation 17 into 16 and ignoring terms $O(dx^2)$ and higher:

$$V(x) = \frac{dM}{dx} \leftarrow \text{shear force} = \text{gradient of bending moment.}$$
 (18)

Note. Equation 18 only applies when the derivatives of M(x) with respect to x exist.

Connection to Mechanic

Examples 0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Derivation of Equations

Illustrative Example

Connection to Mechanics

Shear Force and Bending Moment

Interpretation. Consider an interval [a, b] on a beam:

$$dV = -w(x)dx \rightarrow \int_{a}^{b} dV = -\int_{a}^{b} w(x)dx = V(b) - V(a).$$
 (19)

Key Point: Change in shear force between points a and b = total loading within interval.

$$dM = V(x)dx \rightarrow \int_a^b dM = \int_a^b V(x)dx = M(b) - M(a). \quad (20)$$

Key Point: Change in moment between points a and b = area under the shear force diagram.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ