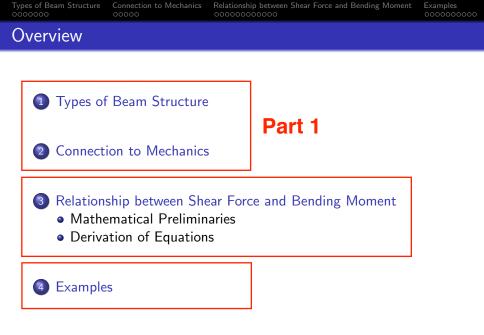
Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples

Analysis of Beam Structures


Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Fall Semester 2020

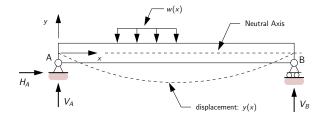
September 3, 2020

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

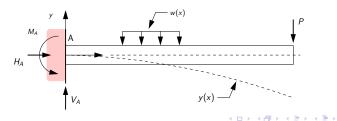
▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Types of Beam Structure ○●○○○○○


Connection to Mechanic

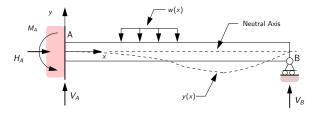
Relationship between Shear Force and Bending Moment


Examples 0000000000

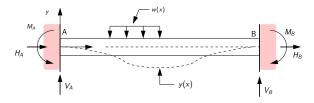
Types of Beam Structures

Simply Supported Beam:

Cantilever:


Connection to Mechanic

Relationship between Shear Force and Bending Moment


Examples 0000000000

Types of Beam Structures

Supported Cantilever:

Fixed-Fixed Beam Structure:

<□▶ <□▶ < □▶ < □▶ < □▶ = ○ ○ <

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Types of Beam Structures

Boundary Conditions

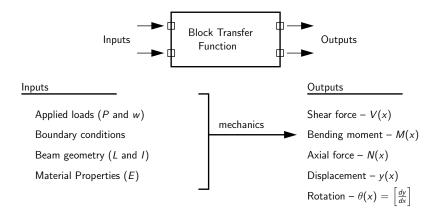
Simply Supported Beam

• y(0) = y(L) = 0.

Cantilever Beam

•
$$y(0) = 0, \ \frac{dy}{dx}|_{x=0} = 0$$

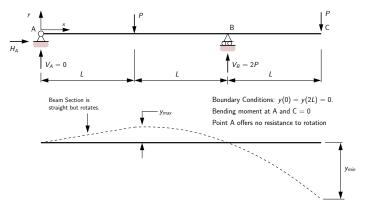
Supported Cantilever Beam


•
$$y(0) = y(L) = 0, \ \frac{dy}{dx}|_{x=0} = 0$$

Fixed-Fixed Beam

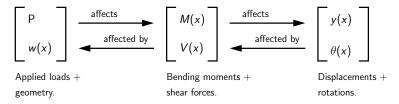
•
$$y(0) = y(L) = 0, \ \frac{dy}{dx}|_{x=0} = \frac{dy}{dx}|_{x=L} = 0$$

Q1. What is the relationship between inputs and outputs?



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Decisions will be based on estimates of outputs.


Typical problem: Given input parameters, compute y(x), find location and magnitude of y_{min} and y_{max} .

For simple problems, can rely on intuition. Otherwise, need math and mechanics.

Q2. What is the relationship among the outputs? Are they dependent?

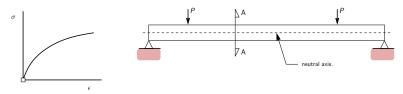
We will need to work with a chain of dependencies.

Q3. What is the relationship between V(x) and M(x)? Are they independent? No! We will see: $V(x) = \frac{dM(x)}{dx}$, but not always true!

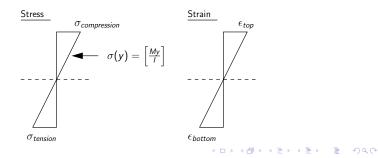
Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples
	00000		

Connection to Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Connection to Mechanics

Relationship between Shear Force and Bending Moment


Examples 0000000000

Connection to Mechanics

Problem Setup

Stress-Strain Relationships

Connection to Mechanics 00000

Relationship between Shear Force and Bending Moment

Examples 0000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Connection to Mechanics

For design purposes we need to make sure:

$$\sigma_{tension} < \sigma_{max}$$
 tension (1)

and

$$\sigma_{compression} < \sigma_{max}$$
 compression (2)

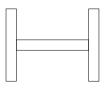
Also,

$$\epsilon_{\max \text{ compression}} \le \epsilon(y) \le \epsilon_{\max \text{ tension}}$$
 (3)

These constraints limit the amount of load that a beam can carry.

Connection to Mechanics

Connection to Mechanics

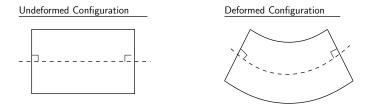

Section-Level Behavior

From a design standpoint we can reduce $\sigma(y)$ and $\epsilon(y)$ by increasing the moment of interia in

$$\sigma(y) = \left[\frac{My}{l}\right].$$
 (4)

To maximise I, maximize distance of material from neutral axis.

Good Choice of Inertia



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assumptions. We will assume beam length / depth \gg 10.

Therefore, displacements will be dominated by flexural bending.

Sections remain perpendicular to the deformed neutral axis.

This is not the case for shear deformations.