Solutions to Arch Problems

ENCE 353 Midterm 2, Open Notes and Open Book

Name: AustiN

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	15	
3	10	
Total	40	

Question 3: 10 points
Simple Three-Pinned Arch. Figure 3 is a front elevation view of a simple three-pinned arch. A vertical load P is applied at node D .

Figure 3: Front elevation view of a simple three-pinned arch.
[Ba] (5 pts) Compute the vertical and horizontal components of reaction force at supports A and B as a function of L and P.

$$
\begin{aligned}
& \sum_{A}=0 \Rightarrow P_{L}=V_{B} 3 C \Rightarrow V_{B}=\frac{P}{3} \\
& \sum^{\prime} V=0 \Rightarrow V_{A}+V_{B}=P \Rightarrow V_{A}=\frac{2}{3} P \\
& \sum^{\prime} M_{C}=0 \Rightarrow V_{B} \cdot L+H_{B} L=0 \Rightarrow H_{B}=-\frac{P}{3} \\
& \Sigma^{\prime} H=0 \Rightarrow H_{A}+H_{B}=0 \Rightarrow H_{A}=P / 3 .
\end{aligned}
$$

[Bb] (3 pts) Compute the magnitude and orientation of the total reaction force vector at support B. Show that it passes through the hinge at C . You can annotate Figure 3 if you think it will help to explain your solution.

$$
\begin{aligned}
& \text { Magnitude } P_{B}=\frac{\sqrt{2}}{3} P \\
& \tan (\theta)=(D / 3 / P / 3)=1 \Rightarrow \theta=\pi / 4 .
\end{aligned}
$$

[3c] (2 pts) Suppose that your calculations indicated that the "total reaction force at support B" did not pass through the hinge at C . What would that mean?

- Structrie not in equilibrium.
- Colculahuria wrong...

ENCE 353 Midterm 2, Open Notes and Open Book

E-mail (print neatly!): austin θ umd.edu

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	15	
3	10	
Total	40	

Question 3: 10 points

Simple Three-Pinned Arch. Figure 3 is a front elevation view of a simple three-pinned arch that carries a total snow loading of 3 WL uniformly distributed over its upper section.

Figure 3: Front elevation view of a three-pinned arch that supports a snow loading.
[Ba] (6 pts) Compute the vertical and horizontal components of reaction force at supports A and B as a function of W and L .

$$
\begin{aligned}
& \sum^{\prime} V=0 \rightarrow V_{A}+V_{B}=3 W L . \\
& \sum_{1}^{\prime} H=0 \rightarrow H_{A}=H_{B}(\text { not useful). } \\
& \sum^{\prime} H_{D}=0(L H S) .(2 W L) L+H_{A} \cdot L=2 L V_{A} \\
& \rightarrow 2 W L+H_{A}=U_{A} \\
&(W L)\left(\frac{L}{2}\right)+H_{B}(2 L)=V_{B} L \\
& \sum^{\prime} M_{D}=0(\text { (} H \text {) } \\
& \rightarrow W L+4 H_{B}=2 V_{B} . \quad \text { (D). }
\end{aligned}
$$

Queation Ba continued:
Add (C) $+(D)$, insert (B)

$$
\begin{align*}
2 W L+H_{A}+W L+4 H_{B} & =2\left(U_{A}+V_{B}\right)=6 \omega L \\
\Rightarrow 3 W L+5 H_{A} & =6 W L \\
\Rightarrow H_{A} & =H_{B}=\frac{3}{5} W L . \tag{E}
\end{align*}
$$

Plug (E) into (C) \& (D)

$$
U_{A}=\frac{13}{10} W L, U_{B}=\frac{17}{10} W L
$$

Check equilibrium.

$$
U_{A}+U_{B}=\left(\frac{13}{10}+\frac{17}{10}\right) W L=3 W L
$$

[3b] (4 pts) Draw and label the bending moment diagram.

