ENCE 353 Midterm 2, Open Notes and Open Book

Name:

E-mail (print neatly!):

\qquad

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	15	
3	10	
Total	40	

Question 1: 15 points

Analysis of a Cantilever Beam with Moment Area. Consider the cantilever shown in Figure 1.

Figure 1: Front elevation view of a cantilever.

The cantilever has constant section properties, EI, along its entire length (a+b). Vertical loads of $\mathrm{P}(\mathrm{kN})$ are applied at points B and C. Notice that the y axis is pointing upwards - hence, if we apply the right-hand rule, positive rotations will be anti-clockwise.
[1a] (3 pts) Draw and label a diagram showing how the beam curvature varies along its length (i.e., $\phi(x)$).
[1b] (3 pts) Use the method of moment-area to show that the rotation of point B is:

$$
\begin{equation*}
\theta(a)=\left[\frac{-P b a}{E I}\right] . \tag{1}
\end{equation*}
$$

[1c] (4 pts) Use the method of $\underline{\text { moment-area to show that the vertical displacement of point } B \text { is: }}$

$$
\begin{equation*}
y(a)=\left[\frac{-P b a^{2}}{2 E I}\right] \tag{2}
\end{equation*}
$$

[1d] (5 pts) Use the method of moment-area to show that the vertical displacement of point C is:

$$
\begin{equation*}
y(a+b)=\left[\frac{-P b}{6 E I}\right]\left[6 a b+3 a^{2}+2 b^{2}\right] . \tag{3}
\end{equation*}
$$

Note: Notice that when $\mathrm{a}=0$, equation 3 simplifies to the formula we have seen many times in class.

Question 2: 15 points

Elastic Curve for a Cantilever Beam Structure. Consider the cantilever shown in Figure 2.

Figure 2: Front elevation view of a cantilever.

The cantilever has constant section properties, EI, along its entire length (a+b). Vertical loads of $\mathrm{P}(\mathrm{kN})$ are applied at points B and C.
[2a] (3 pts) Write a mathematical formula, $\mathrm{M}(\mathrm{x})$, for the bending moment along the beam as a function of x.
[2b] (4 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right], \tag{4}
\end{equation*}
$$

and appropriate boundary conditions, show that in the interval $0 \leq x \leq a$, the beam displacement and rotation are:

$$
\begin{equation*}
y(x)=\left[\frac{-P b x^{2}}{2 E I}\right] \quad \text { and } \quad \theta(x)=\left[\frac{-P b x}{E I}\right] . \tag{5}
\end{equation*}
$$

Show all of your working.
[2c] (7 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right] \tag{6}
\end{equation*}
$$

and appropriate boundary conditions, show that within the interval $a \leq x \leq a+b$, the beam displacement is:

$$
\begin{equation*}
y(x)=\left[\frac{-P}{6 E I}\right]\left[3(a+b) x^{2}-x^{3}-3 a^{2} x+a^{3}\right] . \tag{7}
\end{equation*}
$$

Hint: The algebra for this question is a bit tricky so I suggest that you work out the details on paper and submit a tidy summary of your procedure. Also notice that equation 7 is consistent with equations 2 and 3 in Question 1.

Question 2c continued:

Question 3: 10 points

Simple Three-Pinned Arch. Figure 3 is a front elevation view of a simple three-pinned arch that carries a total snow loading of 3 WL uniformly distributed over its upper section and a point loading $\mathrm{P}(\mathrm{kN})$ applied at point C .

Figure 3: Front elevation view of a three-pinned arch that supports a snow loading.
[3a] (6 pts) Compute the vertical and horizontal components of reaction force at supports A and B as a function of W, L and P .

Queation 3a continued:
[3b] (4 pts) Draw and label the bending moment diagram.

