ENCE 353 Midterm 1, Open Notes and Open Book

Name:

Exam Format and Grading. This exam has three questions. Partial credit will be given for partially correct answers, so please show all your working.

Question	Points	Score
1	15	
2	15	
3	10	
Total	40	

Question 1 (15 points): Support Reactions and Bending Moments in a connected Beam Structure.

Consider the multi-span beam structure shown in Figure 1.

Figure 1: Front elevation view of multi-span beam structure.

The cantilever is fully-fixed to the wall at Point A. Points B and D are hinges. A vertical point load $\mathbf{P}(\mathbf{k N})$ and a clockwise moment $\mathbf{M}(\mathbf{k N} . \mathbf{m})$ is applied at point F. Assume that \mathbf{P} and \mathbf{M} are both positive values.
[1a] (3 pts). Compute the degree of indeterminacy for the beam structure.
[1b] (5 pts). Show that the support reactions at C and E are:

$$
\begin{equation*}
V_{c}=-3[P+M / L] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{e}=[2 P+M / L] ; \tag{2}
\end{equation*}
$$

respectively.

Question 1b: continued:
[1c] (5 pts). Derive expressions for the shear force and bending moment at A.
[1d] (2 pts). Draw and label the bending moment diagram for beam segment A-B alone. Clearly indicate on the bending moment diagram regions where the fibre will be in tension and compression.

Question 2 (15 points): Tension, Compression and Zero-Force Members in a Truss Structure.

Consider the truss structure shown in Figure 2.

Figure 2: Elevation view of 17 bar truss structure.

Vertical loads of $\mathbf{2 P} \mathrm{kN}$ and $\mathbf{P} \mathrm{kN}$ are applied at nodes G and J, respectively.
[2a] (3 pts). Compute the magnitude and direction of the total support reactions at points B and D.
[2b] (3 pts). Identify the zero-force members (If you wish, you can simply annotate Figure 2).
[2c] (7 pts). Using the method of joints (or otherwise) show that: (1) The maximum tensile force in the structure is $2 P \mathrm{kN}(\mathrm{T})$, and (2) The maximum compressive force in the structure is $-2 \sqrt{2} P \mathrm{kN}(\mathrm{C})$.
[2d] (2 pts). Draw a simplified version of Figure 2 with all of the zero force elements removed.

Question 3 (10 points): Degree's of Indeterminacy.

[3a] (4 pts). Compute the degree of indeterminacy for the structure shown in Figure 3.

Figure 3: Simple portal frame.
[3b] (6 pts). Using the method of trees (or otherwise), compute the degree of indeterminacy for the moment-resistant frame shown in Figure 4.

Figure 4: Elevation view of a moment-resistant frame.

