ENCE 353 Midterm 2, Open Notes and Open Book

Name:

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	15	
3	10	
Total	40	

Question 1: 15 points

Deriving Formulae for the Deflection of a Cantilever Beam. The cantilever beam structure shown in Figure 1 carries a uniform load $w(\mathrm{~N} / \mathrm{m})$ along its entire length.

Figure 1: Front elevation view of a cantilever beam carrying a uniform load.

The beam is fully fixed at point A and the flexural stiffness EI is constant along the beam. The coordinate system is positioned at point A .
[1a] (6 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right] \tag{1}
\end{equation*}
$$

and appropriate boundary conditions, show that:

$$
\begin{equation*}
y(x)=\left(\frac{w}{24 E I}\right)\left(6 L^{2} x^{2}-4 L x^{3}+x^{4}\right) \tag{2}
\end{equation*}
$$

Question 1a continued:
[1b] (3 pts) Derive a formula for the slope of the beam as a function of x . This is a one line solution. Use your formula to verify that the beam rotation at B is:

$$
\begin{equation*}
\theta_{B}=\left(\frac{w L^{3}}{6 E I}\right) \tag{3}
\end{equation*}
$$

[1c] (6 pts) Using the results of question [1a] as a starting point, compute the support reactions at A and B for the propped cantilever shown in Figure 2

Figure 2: Propped cantilever beam carrying a uniform load.

Question 2: 15 points

Moment-Area and Rotational Deflections. The simple beam shown in Figure 3 has length L and uniform section properties EI. A point load P is applied at distance a from the left-hand support.

Figure 3: Front elevation view of a simple beam structure.
[2a] (3 pts) Draw and label the $\mathrm{M}(\mathrm{x}) / \mathrm{EI}$ diagram in terms of the problem parameters (i.e., P, EI, L and a).
[2b] (8 pts) Use the method of moment-area to show that the beam rotation at A is:

$$
\begin{equation*}
\theta_{A}=\left[\frac{P}{6 E I}\right]\left[\frac{a(L-a)(2 L-a)}{L}\right] \tag{4}
\end{equation*}
$$

[2c] (4 pts) Show that the maximum value of beam rotation at A occurs when:

$$
\begin{equation*}
a=L\left[1-\frac{\sqrt{12}}{6}\right] . \tag{5}
\end{equation*}
$$

Question 3: 10 points

Simple Three-Pinned Arch. Figure 4 is a front elevation view of a simple three-pinned arch. A vertical load P is applied at node D .

Figure 4: Front elevation view of a simple three-pinned arch.
[3a] (5 pts) Compute the vertical and horizontal components of reaction force at supports A and B as a function of P .
[3b] (5 pts) Compute the magnitude and orientation of the total reaction force vector at support B. Show that it passes through the hinge at C . You can annotate Figure 4 if you think it will help to explain your solution.

