ENCE 353 Midterm 2, Open Notes and Open Book

Name:

Exam Format and Grading. Attempt all three questions. Partial credit will be given for partially correct answers, so please show all of your working.

Question	Points	Score
1	15	
2	15	
3	10	
Total	40	

Question 1: 15 points

Deriving Formulae for the Deflection of a Cantilever Beam. Consider the cantilever beam structure shown in Figure 2.

Figure 1: Front elevation view of a cantilever.

In this problem setup: (1) the beam is fully fixed at point A and the flexural stiffness EI is constant along the beam, (2) there is a vertical load $P \mathrm{kN}$ acting downwards at point B , and (1) the coordinate system is positioned at point A.
[1a] (6 pts) Use the method of moment area to show that:

$$
\begin{equation*}
\triangle(x)=\left(\frac{P}{6 E I}\right) x^{2}(3 L-x) \tag{1}
\end{equation*}
$$

Notice that when $\mathrm{x}=\mathrm{L}$, equation 1 gives the formula we have used in class.

Question 1a continued
[1b] (6 pts) Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right] \tag{2}
\end{equation*}
$$

and appropriate boundary conditions, show that:

$$
\begin{equation*}
\triangle(x)=\left(\frac{P}{6 E I}\right) x^{2}(3 L-x) \tag{3}
\end{equation*}
$$

[1c] (3 pts) Derive a formula for the slope of the beam as a function of x. This is a one line solution. Use your formula to verify that the beam rotation at B is:

$$
\begin{equation*}
\theta_{B}=\left(\frac{P L^{2}}{2 E I}\right) \tag{4}
\end{equation*}
$$

Question 2: 15 points

Moment-Area and Deflections. Consider the cantilevered beam structure shown in Figure 2.

Figure 2: Front elevation view of a cantilevered beam structure.

Notice that segments A-B and B-C have cross-sectional properties EI and 2EI, respectively.
[2a] (3 pts) Compute and draw the $\mathrm{M}(\mathrm{x}) / \mathrm{EI}$ diagram for the complete beam A-B-C.
[2b] (4 pts) Draw and label a diagram of the deflected shape. Clearly indicate on your diagram regions (or points) of the beam having zero curvature.
[2c] (4 pts) Draw and label a diagram showing how the rotation at A is related to the beam deflections at points B and C.
[2d] (4 pts) Use the method of moment-area to compute the vertical deflection of the beam at point C.

Question 3: 10 points

Simple Three-Pinned Arch. Figure 3 is a front elevation view of a simple three-pinned arch. A vertical load P is applied at node D .

Figure 3: Front elevation view of a simple three-pinned arch.
[3a] (5 pts) Compute the vertical and horizontal components of reaction force at supports A and B as a function of L and P.
[3b] (3 pts) Compute the magnitude and orientation of the total reaction force vector at support B. Show that it passes through the hinge at C . You can annotate Figure 3 if you think it will help to explain your solution.
[3c] (2 pts) Suppose that your calculations indicated that the "total reaction force at support B" did not pass through the hinge at C . What would that mean?

