ENCE 353 Midterm 2, Open Notes and Open Book

Name:

Exam Format and Grading. Attempt both questions 1 and 2. Partial credit will be given for partially correct answers, so please show all your working.

Question	Points	Score
1	20	
2	20	
Total	40	

Question 1: 20 points

Moment-Area and Deflections. Consider the cantilevered beam structure shown in Figure 1.

Figure 1: Front elevation view of a cantilevered beam structure.

Notice that segments A-B and B-C have cross-sectional properties EI and 2EI, respectively.
[1a] (4 pts) Compute and draw the $\mathrm{M}(\mathrm{x}) /$ EI diagram for the complete beam A-B-C.
[1b] (4 pts) Draw and label a diagram of the deflected shape. Clearly indicate on your diagram regions of the beam having zero curvature.
[1c] (6 pts) Draw and label a diagram showing how the rotation at A is related to the beam deflections at points B and C.
[1d] (6 pts) Use the method of moment-area to compute the vertical deflection of the beam at point C.

Question 2: 20 points

Virtual Forces. Figure 2 is a front elevation view of a simple two-bar truss. A vertical load P is applied at node B.

Figure 2: Front elevation view of a simple two-bar truss.

Notice that the left-hand bar has cross section properties AE, and the right-hand bar has cross section properties kAE , where k is a positive constant.
[2a] (6 pts) Use the method of virtual forces to show that the vertical displacement at node B is:

$$
\begin{equation*}
\triangle_{y}=\left[\frac{\sqrt{2}}{k}+\frac{1}{\sqrt{2}}\right] \frac{P L}{A E} \tag{1}
\end{equation*}
$$

[2b] (6 pts) Show that the horizontal displacement at node B is:

$$
\begin{equation*}
\triangle_{x}=\left[\frac{\sqrt{2}}{k}-\frac{1}{\sqrt{2}}\right] \frac{P L}{A E} . \tag{2}
\end{equation*}
$$

[2c] (4 pts) Hence, show that:

$$
\begin{equation*}
\text { Total displacement at node } \mathrm{B}=\sqrt{\left[\frac{4}{k^{2}}+1\right]} \cdot \frac{P L}{A E} . \tag{3}
\end{equation*}
$$

[2d] (4 pts) Determine the value of k that will cause node B to move downwards with zero horizontal displacement. This is a one-line computation.

