ENCE 353 Final Exam, Open Notes and Open Book

Name:

Exam Format and Grading. The exam will be 2 hrs plus five minutes to read the questions. Only attempt four questions. Cross out the question that you did not attempt in the table below. No extra credit will be given for attempting five questions - we will simply grade and count the first four questions.

Partial credit will be given for partially correct answers, so please show all your working.

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	40	

Question 1: 10 points

Consider the two-span beam structure shown in Figure 1.

Figure 1: Front elevation view of a cantilevered beam structure.
[1a] (5 pts) Use the Muller-Breslau Principle to compute the influence line diagram for the vertical reaction at \mathbf{B}.
[1b] (5 pts) Now suppose that spans A-B and B-C carry a uniform load of $w_{o} / L \mathrm{~N} / \mathrm{m}$. Using your influence line diagram from Part [1a], compute the vertical reaction at B.

Question 2: 10 points

Consider the cantilevered beam structure shown in Figure 2.

Figure 2: Front elevation view of a cantilevered beam structure.
[2a] (4 pts) Use the method of moment-area to compute the rotation at point A.
[2b] (4 pts) Use the method of moment-area to compute the vertical deflection of the beam at point C.
[2c] (2 pts) Draw the deflected shape of the beam. Indicate the sections of beam where the curvature is constant.

Question 3: 10 points

Consider the truss structure shown in Figure 3.

Figure 3: Elevation view of a pin-jointed truss.

The horizontal and vertical degrees of freedom are fully-fixed at supports A and G. The truss carries a vertical load P at node E. All frame members have cross section properties AE.
[3a] (3 pts) Use the method of joints to identify all of the zero-force members. Label these members on Figure 3.
[3b] (3 pts) Compute the support reactions at A and G as a function of P and L .
[3c] (4 pts) Derive an expression for the vertical deflection at node E , as a function of P , L and AE.

Question 4: 10 points

Consider the simply supported beam structure shown in Figure 4.

Figure 4: Front elevation view of a simply supported beam.
[4a] (10 pts) Use the principle of virtual forces to compute the two-by-two flexibility matrix connecting the vertical displacements at points B and C to applied loads P_{b} and P_{c}, i.e.,

$$
\left[\begin{array}{l}
\triangle_{b} \tag{1}\\
\triangle_{c}
\end{array}\right]=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
P_{b} \\
P_{c}
\end{array}\right]
$$

Question 4 continued ...

Question 5: 10 points

The three-pinned arch structure shown in Figure 5 carries a uniformly distributed load $\mathrm{W}(\mathrm{N} / \mathrm{m})$ across its entire 6 m span.

Figure 5: Elevation view of a three-pinned arch structure carrying a uniformly distributed load.
[5a] (10 pts). Compute the vertical and horizontal components of reaction force at supports A and B.

Part 5a continued ...

