ENCE353: Introduction to Structural Analysis

In-Class Problems \#4 Solution
A cantilever beam is shown below, assuming the EI is constant along the beam:

(1) Derive the deflection curve $\mathrm{y}(\mathrm{x})$ based on elastic beam theory (i.e. $d^{2} \mathrm{y} / \mathrm{dx}^{2}=M(\mathrm{x}) / E I$);
(2) Based on the results of (1), calculate the deflection $y(x=2 L)$ and the angle of tangent (or slope) at point $B\left(\theta_{\mathrm{B}}\right)$;
(3) Use the method of moment-area to verify your results from (2).

Solution:
(1-2) Draw the free body diagram of the beam and replace the boundary conditions with reactions:

$$
M_{A}=\frac{3 w L^{2}}{2}
$$

w

For interval $0<=\mathrm{x}<=\mathrm{L}$,

$$
\begin{gathered}
M(x)=\frac{3 w L^{2}}{2}-w L x \\
\Rightarrow \frac{d y}{d x}=\int \frac{M(x)}{E I} d x=\frac{3 w L^{2}}{2} x-\frac{w L}{2} x^{2}+A \\
\left.\because \frac{d y}{d x}\right|_{x=0}=0 \\
\therefore A=0 \\
\Rightarrow y(x)=\iint \frac{M(x)}{E I} d x d x=\frac{3 w L^{2}}{4} x^{2}-\frac{w L}{6} x^{3}+B \\
\because y(0)=0 \\
\therefore B=0
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow y(x)=\frac{3 w L^{2}}{4} x^{2}-\frac{w L}{6} x^{3} \\
y(L)=\frac{7}{12} w L^{4},\left.\frac{d y}{d x}\right|_{x=L}=w L^{3}
\end{gathered}
$$

For interval $L<=x<=2 L$

$$
\begin{gathered}
M(x)=\frac{3 w L^{2}}{2}-w L x+\frac{1}{2} w(x-L)^{2}=2 w L^{2}-2 w L x+\frac{1}{2} w x^{2} \\
\Rightarrow \frac{d y}{d x}=\int \frac{M(x)}{E I} d x=2 w L^{2} x-w L x^{2}+\frac{1}{6} w x^{3}+C \\
\left.\because \frac{d y}{d x}\right|_{x=L}=w L^{3} \\
\therefore 2 w L^{3}-w L^{3}+\frac{1}{6} w L^{3}+C=w L^{3} \Rightarrow C=-\frac{1}{6} w L^{3} \\
\Rightarrow y(x)=\iint \frac{M(x)}{E I} d x d x=w L^{2} x^{2}-\frac{w L}{3} x^{3}+\frac{1}{24} w x^{4}-\frac{1}{6} w L^{3} x+D \\
\because y(L)=\frac{7}{12} w L^{4} \\
\therefore w L^{4}-\frac{w L^{4}}{3}+\frac{1}{24} w L^{4}-\frac{1}{6} w L^{4}+D=\frac{7}{12} w L^{4} \Rightarrow D=\frac{1}{24} w L^{4} \\
\Rightarrow y(x)=w L^{2} x^{2}-\frac{w L}{3} x^{3}+\frac{1}{24} w x^{4}-\frac{1}{6} w L^{3} x+\frac{1}{24} w L^{4} \\
\Rightarrow \Delta_{B}=y(2 L)=4 w L^{4}-\frac{8 w L^{4}}{3}+\frac{16}{24} w L^{4}-\frac{2}{6} w L^{4}+\frac{1}{24} w L^{4}=\frac{41}{24} w L^{4} \\
\Rightarrow \theta_{B}=\left.\frac{d y}{d x}\right|_{x=2 L}=4 w L^{3}-4 w L^{3}+\frac{8}{6} w L^{3}-\frac{1}{6} w L^{3}=\frac{7}{6} w L^{3}
\end{gathered}
$$

(3) Draw the moment diagram:

Calculate the deflection at point B:

$$
\Delta_{B}=\frac{\frac{1}{2} \cdot L \cdot w L^{2}}{E I} \cdot\left(\frac{2}{3} L+L\right)+\frac{L \cdot \frac{1}{2} w L^{2}}{E I} \cdot\left(\frac{1}{2} L+L\right)+\frac{\frac{1}{3} \cdot \frac{1}{2} w L^{2} \cdot L}{E I} \cdot \frac{3}{4} L=\frac{41}{24} \frac{w L^{4}}{E I}
$$

Calculate the slope at point B:

$$
\theta_{B}=\left(\frac{3}{2} w L^{2}+\frac{1}{2} w L^{2}\right) \frac{L}{2}+\frac{1}{3} L \frac{1}{2} w L^{2}=\frac{7}{6} w L^{3}
$$

Thus, the results are confirmed.

