ENCE353: Introduction to Structural Analysis

Homework \#3 Solution

Problem 1: For the three-pin arc structure shown below, the profile is given by $y=\frac{4 f}{l^{2}} x(l-x)$, where $f=4 \mathrm{~m}$ and $l=16 \mathrm{~m}$.

(a) Calculate the reactions at A and B;
(b) Calculate the internal forces at point E (i.e. axial force F_{N}, shear force F_{Q} and bending moment M);
(c) Draw the moment diagram.
(d) if $f=8 \mathrm{~m}$, redo the calculation (a), (b), and (c).

Solution:
(a) Draw the free body diagram of the arc structure:

Slice the arc structure at point C , and write the moment equilibrium about point C (left part) would get:

$$
\sum M_{C}=0,-F_{P} \cdot 4+V_{A} \cdot 8-H_{A} \cdot 4=0 \Rightarrow H_{A}=\frac{F_{P}}{2}(\rightarrow) \Rightarrow H_{B}=\frac{F_{P}}{2}(\leftarrow)
$$

(b) Slice the arc structure at point E, and draw the free body diagram of the right part:

$$
\sum F_{x}=0, H_{E}=H_{B} \Rightarrow H_{E}=\frac{F_{P}}{2}(\rightarrow)
$$

$$
\sum F_{y}=0, V_{E}+V_{B}=0 \Rightarrow V_{E}=-\frac{F_{P}}{4}(\downarrow)
$$

$$
\sum M_{E}=0,-M_{E}-V_{B} \cdot 4+H_{B} \cdot y(12)=0 \Rightarrow M_{E}=\frac{F_{P}}{2}(\curvearrowleft)
$$

The axial force at point E is along with the tangent of the arc profile at point E and the shear force is perpendicular to the tangent of the arc profile. Thus, to calculate the axial and shear force, decomposition of H_{E} and V_{E} is needed:

$$
\begin{aligned}
& \tan \alpha=-\frac{1}{2} \Rightarrow \alpha=153.43(\mathrm{deg}) \Rightarrow \beta=26.57(\mathrm{deg}) \Rightarrow \gamma=\beta=26.57(\mathrm{deg}) \\
& \sin \beta=0.447, \cos \beta=0.894 \\
& Q=V_{E} \sin \beta+H \cos \beta=\frac{F_{P}}{4} \cdot 0.447+\frac{F_{P}}{2} \cdot 0.894=0.559 F_{P}(\operatorname{compression}) \\
& Q=-V_{E} \cos \beta+H \sin \beta=-\frac{F_{P}}{4} \cdot 0.894+\frac{F_{P}}{2} \cdot 0.447=0
\end{aligned}
$$

(c) Assume the moment at point $\mathrm{x}=\mathrm{x}$ is positive in clockwise:

For section $0<=\mathrm{x}<=4$, write the moment equilibrium about point at $\mathrm{x}=\mathrm{x}$:

$$
\begin{gathered}
\sum M_{x=x}=0, V_{A} \cdot x-H_{A} \cdot y(x)+M(x)=0 \\
\Rightarrow M(x)=-\frac{3 F_{P}}{4} x+\frac{F_{P}}{2}\left(\frac{4 f}{l^{2}} x(l-x)\right)=-\frac{F_{P}}{32} x^{2}-\frac{F_{P}}{4} x
\end{gathered}
$$

For section $4<=x<=16$,

$$
\begin{aligned}
& \sum M_{x=x}=0, V_{A} \cdot x-H_{A} \cdot y(x)-F_{P} \cdot(x-4)+M(x)=0 \\
\Rightarrow & M(x)=-\frac{3 F_{P}}{4} x+\frac{F_{P}}{2}\left(\frac{4 f}{l^{2}} x(l-x)\right)=-\frac{F_{P}}{32} x^{2}+\frac{3 F_{P}}{4} x-4 F_{P}
\end{aligned}
$$

Draw the moment diagram (Assume the value of $\mathrm{F}_{\mathrm{p}}>=0$):

Draw the free body diagram of the arc structure:

$$
\begin{gathered}
\sum F_{x}=0, H_{A}=H_{B} \\
\sum F_{y}=0, V_{A}+V_{B}=F_{p}
\end{gathered}
$$

$$
\sum M_{A}=0, F_{P} \cdot 4-V_{B} \cdot 16=0 \Rightarrow V_{B}=\frac{F_{P}}{4}(\uparrow) \Rightarrow V_{A}=\frac{3 F_{P}}{4}(\uparrow)
$$

Slice the arc structure at point C , and write the moment equilibrium about point C (left part) would get:

$$
\sum M_{C}=0,-F_{P} \cdot 4+V_{A} \cdot 8-H_{A} \cdot 8=0 \Rightarrow H_{A}=\frac{F_{P}}{4}(\rightarrow) \Rightarrow H_{B}=\frac{F_{P}}{4}(\leftarrow)
$$

(d-b) Slice the arc structure at point E, and draw the free body diagram of the right part:

$$
\sum F_{x}=0, H_{E}=H_{B} \Rightarrow H_{E}=\frac{F_{P}}{4}(\rightarrow)
$$

$$
\sum F_{y}=0, V_{E}+V_{B}=0 \Rightarrow V_{E}=-\frac{F_{P}}{4}(\downarrow)
$$

$$
\sum M_{E}=0,-M_{E}-V_{B} \cdot 4+H_{B} \cdot y(12)=0 \Rightarrow M_{E}=\frac{F_{P}}{2}(\curvearrowleft)
$$

The axial force at point E is along with the tangent of the arc profile at point E and the shear force is perpendicular to the tangent of the arc profile. Thus, to calculate the axial and shear force, decomposition of H_{E} and V_{E} is needed:

$$
\begin{aligned}
& P=V_{E} \sin \beta+H \cos \beta=\frac{F_{P}}{4} \cdot 0.707+\frac{F_{P}}{4} \cdot 0.707=0.353 F_{P}(\text { compression }) \\
& \tan \alpha=-1 \Rightarrow \alpha=135(\operatorname{deg}) \Rightarrow \beta=45(\mathrm{deg}) \Rightarrow \gamma=\beta=45(\mathrm{deg}) \\
& Q=-V_{E} \cos \beta+H \sin \beta=-\frac{F_{P}}{4} \cdot 0.707+\frac{F_{P}}{4} \cdot 0.707=0
\end{aligned}
$$

(d-c) Assume the moment at point $\mathrm{x}=\mathrm{x}$ is positive in clockwise:
For section $0<=\mathrm{x}<=4$, write the moment equilibrium about point at $\mathrm{x}=\mathrm{x}$:

$$
\begin{gathered}
\sum M_{x=x}=0, V_{A} \cdot x-H_{A} \cdot y(x)+M(x)=0 \\
\Rightarrow M(x)=-\frac{3 F_{P}}{4} x+\frac{F_{P}}{2}\left(\frac{4 f}{l^{2}} x(l-x)\right)=-\frac{F_{P}}{32} x^{2}-\frac{F_{P}}{4} x
\end{gathered}
$$

For section $4<=x<=16$,

$$
\begin{gathered}
\sum M_{x=x}=0, V_{A} \cdot x-H_{A} \cdot y(x)-F_{P} \cdot(x-4)+M(x)=0 \\
\Rightarrow M(x)=-\frac{3 F_{P}}{4} x+\frac{F_{P}}{2}\left(\frac{4 f}{l^{2}} x(l-x)\right)-F_{P} \cdot(x-4) \\
=-\frac{F_{P}}{32} x^{2}+\frac{3 F_{P}}{4} x-4 F_{P}
\end{gathered}
$$

Draw the moment diagram (Assume the value of $\mathrm{F}_{\mathrm{p}}>=0$):

Problem 2 The cable structure shown below carries a triangular load that is zero at the left-hand support and increases to wo N / m at the right-hand support.

(a) Prove that the cable profile is govern by the equation:

$$
y(x)=\frac{w_{0} x^{3}}{180 H}+\left(1-\frac{5 w_{0}}{H}\right) x
$$

Solution:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=\frac{w(x)}{H}=\frac{w_{0} x}{30 H} \\
\Rightarrow \frac{d y}{d x}=\frac{w_{0} x^{2}}{60 H}+A \\
\Rightarrow y(x)=\frac{w_{0} x^{3}}{180 H}+A x+B
\end{gathered}
$$

Apply $y(0)=0, y(30)=30$:

$$
\begin{gathered}
\left\{\begin{array}{l}
B=0 \\
A=1-\frac{5 w_{0}}{H}
\end{array}\right. \\
\Rightarrow y(x)=\frac{w_{0} x^{3}}{180 H}+\left(1-\frac{5 w_{0}}{H}\right) x
\end{gathered}
$$

(b) Assume, the minimum value of the cable profile occurs at $x=10 \mathrm{~m}$, calculate the reactions at both ends.

Solution:
Note: Point A is the left end, and point B is the right end.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{w_{0} x^{2}}{60 H}+1-\frac{5 w_{0}}{H} \\
\left.\frac{d y}{d x}\right|_{x=10}=0 \Rightarrow \frac{100 w_{0}}{60 H}+1-\frac{5 w_{0}}{H}=0 \Rightarrow H=\frac{10}{3} w_{0} \\
\sum M @ A=0, V_{B} \cdot 30-H \cdot 30-\frac{1}{2} \cdot 30 \cdot w_{0} \cdot \frac{2}{3} \cdot 30=0 \Rightarrow V_{B}=\frac{40}{3} w_{0} \\
\sum F_{y}=0, V_{A}=15 w_{0}-V_{B}=\frac{5}{3} w_{0}
\end{gathered}
$$

