ENCE353: Introduction to Structural Analysis

Homework \#2 Solution

Problem 1: Find the zero force members in the following truss structure.

Draw a free body diagram at joint D (assume all members are in compression):

If there is a force in member DC (i.e. $\mathrm{F}_{\mathrm{DC}} \neq 0$), the $\sum_{\mathrm{F}}=0$ can NOT be accomplished because there are no other forces to balance the vertical component of F_{DC}. Therefore, the F_{DC} must be zero.

Similar logic can be applied in joint E.
Thus, members with zero force in the structure are $\mathbf{C D}$ and $\mathbf{C E}$.

Problem 2: If the maximum force that any member can support is 12 kips in tension and 8 kips in compression, determine the maximum force F_{P} can be applied on the following structure (all the angles are $\pi / 3$).

Use method of superposition for this linear elastic structure and assume $\mathrm{F}_{\mathrm{p}}=1 \mathrm{kips}$, the vertical reaction forces at A and B are:

$$
\begin{gathered}
\sum \mathrm{M}_{\mathrm{A}}=0, \mathrm{~F}_{\mathrm{p}} * 10=\mathrm{V}_{\mathrm{B}} * 10, \mathrm{~V}_{\mathrm{B}}=\mathrm{F}_{\mathrm{p}}=1 \mathrm{kips}(\downarrow) \\
\sum \mathrm{F}_{\mathrm{y}}=0,-\mathrm{F}_{\mathrm{P}}+\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0, \mathrm{~V}_{\mathrm{A}}=2 \mathrm{kips}(\uparrow)
\end{gathered}
$$

use method of joint to calculate the force in each member starting from joint E :

Problem 3: Use method of section to solve for the forces in members 1, 2 and 3.

(1) the structure is symmetric about the center line; thus, the vertical reaction forces are equal with a value of $9 / 2 \mathrm{kN}$ and there will be no horizontal reaction force due to equilibrium.
(2) Use method of section; draw free body diagram as following assuming forces in member 1,2 and 3 are in tension:

$$
\sum M_{B}=0,1 \times 6+2 \times 3=V_{A} \cdot 6+F_{1} \cdot d_{1}
$$

where, $d_{1}=3$
$\Rightarrow F_{1}=-5 \mathrm{kN}$

$$
\sum M_{D}=0,1 \times 3+F_{3} \cdot d_{2}=V_{A} \cdot 3
$$

where, $d_{2}=\sqrt{3}$
$\Rightarrow F_{3}=\frac{10.5}{\sqrt{3}}=6.06 \mathrm{kN}$
$\sum M_{E}=0,1 \times 3=V_{A} \cdot 3+F_{1} \cdot d_{3}+F_{2} \cdot d_{4}$
where, $d_{3}=\frac{3}{2}, d_{4}=\frac{3}{2}$
$\Rightarrow F_{2}=-2 \mathrm{kN}$

Problem 4: Plot the moment diagram for the following structures. Please include essential calculation details.

(a) Shear Force Diagram (SFD):

Bending Moment Diagram (BMD):

(b) Shear Force Diagram (SFD):

(c) Shear Force Diagram (SFD):

(d) Shear Force Diagram (SFD):

Bending Moment Diagram (BMD):

Bending Moment Diagram (BMD):

Bending Moment Diagram (BMD):

