ENCE353: Introduction to Structural Analysis

In-Class Problems \#4 Solution
A cantilever beam is shown below, assuming the EI is constant along the beam:

(1) Derive the deflection curve $\mathrm{y}(\mathrm{x})$ based on elastic beam theory (i.e. $\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}=\mathrm{M}(\mathrm{x}) / E I$);
(2) Based on the results of (1), calculate the deflection $y(x=L)$ and the angle of tangent (or slope) at point $B\left(\theta_{B}\right)$;
(3) Use the method of moment-area to verify your results from (2).

Solution:
(1) Draw the free body diagram of the beam and replace the boundary conditions with reactions:

Slice the beam in $\mathrm{x}=\mathrm{x}$, and draw the free body diagram, assuming x is 0 at point A and is L at point B :

Make moment equilibrium about pint $\mathrm{x}=\mathrm{x}$, assuming moment is positive in counter-clockwise:

$$
\begin{gathered}
M_{A}-V_{A} \cdot x+w \cdot x \cdot \frac{x}{2}+M(x)=0 \\
\quad \Rightarrow M(x)=\frac{w L^{2}}{2}-w L x+\frac{w x^{2}}{2}
\end{gathered}
$$

Recall elastic beam equation:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=\frac{M(x)}{E I}=\frac{1}{E I} \cdot\left(\frac{w L^{2}}{2}-w L x+\frac{w x^{2}}{2}\right) \\
\frac{d y}{d x}=\frac{1}{E I} \cdot\left(\frac{w L^{2}}{2} x-w L \frac{x^{2}}{2}+\frac{w x^{3}}{6}+C_{1}\right) \\
y(x)=\frac{1}{E I} \cdot\left(\frac{w L^{2} x^{2}}{4}-w L \frac{x^{3}}{6}+\frac{w x^{4}}{24}+C_{1} x+C_{2}\right)
\end{gathered}
$$

$$
\text { Apply BC: }\left.\frac{d y}{d x}\right|_{x=0}=0, y(x=0)=0
$$

$$
C_{1}=C_{2}=0
$$

$$
\Rightarrow y(x)=\frac{1}{E I} \cdot\left(\frac{w L^{2} x^{2}}{4}-w L \frac{x^{3}}{6}+\frac{w x^{4}}{24}\right)
$$

(2) Evaluate $y(x)$ and $d y / d x$ at $x=L$:

$$
\begin{aligned}
y(x=L) & =\frac{1}{E I} \cdot\left(\frac{w L^{2} L^{2}}{4}-w L \frac{L^{3}}{6}+\frac{w L^{4}}{24}\right)=\frac{w L^{4}}{8 E I} \\
\left.\frac{d y}{d x}\right|_{x=L} & =\frac{1}{E I} \cdot\left(\frac{w L^{2}}{2} L-w L \frac{L^{2}}{2}+\frac{w L^{3}}{6}\right)=\frac{w L^{3}}{6 E I}
\end{aligned}
$$

For small deflection, $\theta_{B}=\tan \theta_{B}=\frac{w L^{3}}{6 E I}$
(3) Draw the moment diagram:

$$
\begin{gathered}
\theta_{B}=\frac{1}{E I} \cdot \frac{1}{3} \cdot \frac{w L^{2}}{2} \cdot L=\frac{w L^{3}}{6 E I} \\
\Delta_{B}=\frac{1}{E I} \cdot \frac{1}{3} \cdot \frac{w L^{2}}{2} \cdot L \cdot \frac{3 L}{4}=\frac{w L^{4}}{8 E I}
\end{gathered}
$$

