## ENCE 353 Homework 3

Question 1: The three-pinned arch structure shown in Figure 2 carries a uniformly distributed load $\mathrm{W}(\mathrm{N} / \mathrm{m})$ across its entire 6 m span.


Figure 1: Elevation view of a three-pinned arch structure carrying a uniformly distributed load.
[1a] Compute the vertical and horizontal components of reaction force at supports A and B.

Question 2: The cable structure shown in Figure 2 carries a triangular load that is zero at the left-hand support and increases to $w_{o} \mathrm{~N} / \mathrm{m}$ at the right-hand support.


Figure 2: Elevation view of a swing bridge carrying a triangular loading.
[2a] Starting from first principles (i.e., the differential equation), show that cable profile is given by the equation

$$
\begin{equation*}
y(x)=\frac{w_{o} x^{3}}{180 H}+\left(1-\frac{5 w_{o}}{H}\right) x \tag{1}
\end{equation*}
$$

Now let us assume that the minumum value of the cable profile occurs at $\mathrm{x}=10$.
[2b] Show that the horizontal cable force is:

$$
\begin{equation*}
H=\frac{20 w_{o}}{6} \tag{2}
\end{equation*}
$$

[2c] Draw and label a diagram showing the horizontal and vertical components of reaction force at the left- and right-hand cable supports.

