Analysis of Statically Determinate Structures

- Idealized Structure
- Principle of Superposition
- Equations of Equilibrium
- Determinacy and Stability
- Beams
- Frames
- Gable Frames
- Application of the Equations of Equilibrium
- Analysis of Simple Diaphragm and Shear Wall Systems Problems

Classification of Structures

- Support Connections

typical "pin-supported" connection (metal)

typical "roller-supported" connection (concrete)

typical "fixed-supported" connection (metal)

typical "fixed-supported" connection (concrete)

Type of	Idealized	Reaction	Number of Unknowns
Connection	Symbol		

(5)

Two unknowns. The reactions are two force components.
Smooth pin or hinge
(6)
slider

fixed-connected collar
(7)

fixed support

Three unknowns. The reactions are the moment and the two force components.

- Idealized Structure.

actual structure

idealized structure

idealized framing plan

fixed-connected overhanging beam

idealized framing plan

idealized framing plan

- Tributary Loadings.

One-Way System.

idealized framing plan

idealized beam

Idealized framing plan
for one-way slab action requires $L_{2} / L_{1} \geq 2$

Principle of Superposition

Two requirements must be imposed for the principle of superposition to apply:

1. The material must behave in a linear-elastic manner, so that Hooke's law is valid, and therefore the load will be proportional to displacement.

$$
\begin{aligned}
& \sigma=P / A \\
& \delta=P L / A E
\end{aligned}
$$

2. The geometry of the structure must not undergo significant change when the loads are applied, i.e., small displacement theory applies. Large displacements will significantly change and orientation of the loads. An example would be a cantilevered thin rod subjected to a force at its end.

Equations of Equilibrium

$$
\begin{array}{lll}
\Sigma F_{x}=0 & \Sigma F_{y}=0 & \Sigma F_{z}=0 \\
\Sigma M_{x}=0 & \Sigma M_{y}=0 & \Sigma M_{z}=0
\end{array}
$$

internal loadings

Determinacy and Stability

- Determinacy

$$
\begin{aligned}
& r=3 n, \text { statically determinate } \\
& r>3 n, \text { statically indeterminate }
\end{aligned}
$$

$n=$ the total parts of structure members.
$r=$ the total number of unknown reactive force and moment components

Example 2-1

Classify each of the beams shown below as statically determinate or statically indeterminate. If statically indeterminate, report the number of degrees of indeterminacy. The beams are subjected to external loadings that are assumed to be known and can act anywhere on the beams.

SOLUTION

$$
r=3, n=1,3=3(1)
$$

Statically determinate

$r=5, n=1,5-3(1)=2$ Statically indeterminate to the second degree

$$
r=6, n=2,6=3(2)
$$

Statically determinate

Statically indeterminate to the first degree

Example 2-2

Classify each of the pin-connected structures shown in figure below as statically determinate or statically indeterminate. If statically are subjected to arbitrary external loadings that are assumed to be known and can act anywhere on the structures.

SOLUTION

$$
r=7, n=2,7-3(2)=1
$$

$r=9, n=3,9=3(3)$

Statically indeterminate to the first degree

Statically determinate

$r=10, n=2,10-6=4$
degree

$$
r=9, n=3,9=3(3)
$$

Statically indeterminate to the fourth

Statically determinate

Example 2-3

Classify each of the frames shown in figure below as statically determinate or statically indeterminate. If statically indeterminate, report the number of degrees of indeterminacy. The frames are subjected to external loadings that are assumed to be known and can act anywhere on the frames.

SOLUTION

$r=9, n=2,9-6=3$

$r=15, n=3,15-9=6$

Statically indeterminate to the third degree

Statically indeterminate to the sixth degree

- Stability
$r<3 n$, unstable
$r \geqslant 3 n$, unstable if member reactions are concurrent or parallel or some of the components form a collapsible mechanism

Partial Constrains

Improper Constraints

Example 2-4

Classify each of the structures in the figure below as stable or unstable. The structures are subjected to arbitrary external loads that are assumed to be known.

SOLUTION

The member is stable since the reactions are non-concurrent and nonparallel. It is also statically determinate.

The compound beam is stable. It is also indeterminate to the second degree.

The compound beam is unstable since the three reactions are all parallel.

The member is unstable since the three reactions are concurrent at B.

The structure is unstable since $r=7, n=3$, so that, $r<3 n, 7<9$. Also, this can be seen by inspection, since $A B$ can move horizontally without restraint.

Application of the Equations of Equilibrium

statically determinate

Example 2-5

Determine the reactions on the beam shown.

SOLUTION

$\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-132.5=0: A_{x}=132.5 \mathrm{kN}, \rightarrow$
$\begin{aligned}+\quad \Sigma M_{A}=0: \quad B_{y}(4)-(229.5)(3)+(132.5)(0.3)-70 & =0 \\ B_{y} & =179.69 \mathrm{kN}, \uparrow\end{aligned}$
$+{ }^{\uparrow} \Sigma F_{y}=0: \quad A_{y}-229.5+179.69=0$
$A_{y}=49.81 \mathrm{kN}, \uparrow$

Example 2-6

Determine the reactions on the beam shown.

SOLUTION

$$
\xrightarrow{\rightarrow} \Sigma F_{x}=0: \quad A_{x}=0
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}-60-60=0
$$

$$
A_{y}=120 \mathrm{kN}, \uparrow
$$

$+\Sigma M_{A}=0: \quad M_{A}-(60)(4)-(60)(6)=0$
$M_{A}=600 \mathrm{kN} \cdot \mathrm{m}$

Example 2-7

Determine the reactions on the beam shown. Assume A is a pin and the support at B is a roller (smooth surface).

SOLUTION

$$
\begin{array}{cc}
+\Sigma M_{A}=0: & -28(2)+N_{B} \sin 33.7(6)+N_{B} \cos 33.7(3)=0 \\
& N_{B}=9.61 \mathrm{kN} \\
+\Sigma F_{x}=0: & A_{x}-N_{B} \cos 33.7=0 ; A_{x}=9.61 \cos 33.7=8 \mathrm{kN}, \rightarrow \\
+\uparrow \Sigma F_{y}=0: & A_{y}-28+9.61 \cos 33.7=0 \\
+ & A_{y}=22.67 \mathrm{kN}, \uparrow
\end{array}
$$

Example 2-8

The compound beam in figure below is fixed at A. Determine the reactions at A, B, and C. Assume that the connection at pin and C is a rooler.

SOLUTION

Member BC
$+\begin{aligned} &+ \\ & M_{B}=0: \quad C_{y}(4)-8=0 \\ & C_{y}=2 \mathrm{kN}, \uparrow\end{aligned}$
$\xrightarrow{\rightarrow} \Sigma F_{x}=0: \quad B_{x}=0$
$\begin{array}{ll}+\uparrow \Sigma F_{y}=0: & C_{y}-B_{y}=0 ; \\ & B_{y}=C_{y}=2 \mathrm{kN}, \uparrow\end{array}$

Member $\boldsymbol{A B}$
$+\quad \Sigma M_{A}=0: \quad M_{A}-36(3)+2(6)=0$ $M_{A}=96 \mathrm{kN} \cdot \mathrm{m}$
$\xrightarrow{+} \Sigma F_{x}=0: \quad A_{x}-B=0 ; A_{x}=B_{x}=0$
$+\uparrow \Sigma F_{y}=0: \quad A_{y}-36+2=0$

$$
A_{y}=34 \mathrm{kN}, \uparrow 38
$$

Example 2-9

The side girder shown in the photo supports the boat and deck. An idealized model of this girder is shown in the figure below, where it can be assumed A is a roller and B is a pin. Using a local code the anticipated deck loading transmitted to the girder is $6 \mathrm{kN} / \mathrm{m}$. Wind exerts a resultant horizontal force of 4 kN as shown, and the mass of the boat that is supported by the girder is 23 Mg . The boat's mass center is at G. Determine the reactions at the supports.

SOLUTION

$$
\xrightarrow{ \pm} \Sigma F_{x}=0:
$$

$$
\begin{aligned}
4-B_{x} & =0 \\
B_{x} & =4 \mathrm{kN}, \leftarrow
\end{aligned}
$$

$$
+\Sigma M_{B}=0 \text { : }
$$

23(9.81) kN = 225.6 kN
$22.8(1.9)-A_{y}(2)+225.6(5.4)$

$$
\begin{array}{r}
-4(0.3)=0 \\
A_{y}=630.2 \mathrm{kN}, \uparrow
\end{array}
$$

$$
\begin{aligned}
& +\uparrow \Sigma F_{y}=0: \\
& -225.6+630.2-22.8+B_{y}=0 \\
& \quad B_{y}=382 \mathrm{kN}, \uparrow
\end{aligned}
$$

Example 2-10

Determine the horizontal and vertical components of reaction at the pins A, B, and C of the two-member frame shown in the figure below.

SOLUTION

Member BC

+) $\Sigma M_{C}=0$:

$$
\begin{aligned}
-B_{y}(2)+6(1) & =0 \\
B_{y} & =3 \mathrm{kN}, \uparrow
\end{aligned}
$$

Member $\boldsymbol{A B}$
$1.5 \mathrm{~m}_{+} \Sigma M_{A}=0:$

$$
\begin{gathered}
-8(2)-3(2)+B_{x}(1.5)=0 \\
B_{x}=14.7 \mathrm{kN}, \leftarrow \\
\xrightarrow{+} \Sigma F_{x}=0
\end{gathered}
$$

$$
\begin{gathered}
A_{x}+(3 / 5) 8-14.7=0 \\
A_{x}=9.87 \mathrm{kN}, \rightarrow \\
+\uparrow \Sigma F_{y}=0: \\
A_{y}-(4 / 5) 8-3=0 \\
A_{y}=9.4 \mathrm{kN}, \uparrow
\end{gathered}
$$

Member BC
$\xrightarrow{+} \Sigma F_{x}=0: \quad C_{x}-B_{x}=0 ; C_{x}=B_{x}=14.7 \mathrm{kN}, \leftarrow$
$+\uparrow \Sigma F_{y}=0: \quad 3-6+C_{x}=0 ; \quad C_{y}=3 \mathrm{kN}, \uparrow$

Example 2-11-1

From the figure below, determine the horizontal and vertical components of reaction at the pin connections A, B, and C of the supporting gable arch.

Entire Frame

$$
\begin{aligned}
+\Sigma M_{A}=0: \quad C_{y}(6)-15(3) & =0 \\
C_{y} & =7.5 \mathrm{kN}, \uparrow
\end{aligned}
$$

$$
+\uparrow \Sigma F_{y}=0: \quad A_{y}+7.5=0
$$

$$
A_{y}=-7.5 \mathrm{kN}, \downarrow
$$

Member $\boldsymbol{A B}$

$$
\begin{aligned}
& +\Sigma M_{B}=0: 15(3)+A_{x}(6)+7.5(3)=0 \\
& A_{x}=-11.25 \mathrm{kN}, \leftarrow \\
& \xrightarrow{+} \Sigma F_{x}=0: \quad-11.25+15-B_{x}=0 \\
& B_{x}=3.75 \mathrm{kN}, \leftarrow \\
& +\uparrow \Sigma F_{y}=0: \quad-7.5+B y=0 \\
& B_{y}=7.5 \mathrm{kN}
\end{aligned}
$$

Member BC

$$
\xrightarrow{+} \Sigma \mathrm{F}_{x}=0: \quad \begin{aligned}
3.75-C_{x} & =0 \\
C_{x} & =3.75 \mathrm{kN}
\end{aligned}
$$

Example 2-11-2

The side of the building in the figure below is subjected to a wind loading that creates a uniform normal pressure of 1.5 kPa on the windward side and a suction pressure of 0.5 kPa on the leeward side. Determine the horizontal and vertical components of reaction at the pin connections A, B, and C of the supporting gable arch.

SOLUTION

A uniform distributed load on the windward side is
$\left(1.5 \mathrm{kN} / \mathrm{m}^{2}\right)(4 \mathrm{~m})=6 \mathrm{kN} / \mathrm{m}$

A uniform distributed load on the leeward side is

$$
\left(0.5 \mathrm{kN} / \mathrm{m}^{2}\right)(4 \mathrm{~m})=2 \mathrm{kN} / \mathrm{m}
$$

Entire Frame

$$
\begin{array}{r}
+\int \Sigma M_{A}=0: \quad-(18+6)(1.5)-(25.46+8.49) \cos 45^{\circ}(4.5)-\left(25.46 \sin 45^{\circ}\right)(1.5) \\
+\left(8.49 \sin 45^{\circ}\right)(4.5)+C_{y}(6)=0 \\
C_{y}=24.0 \mathrm{kN}, \uparrow
\end{array}
$$

$$
\begin{array}{r}
\uparrow \Sigma F_{y}=0: \quad A_{y}-25.46 \sin 45^{\circ}+8.49 \sin 45^{\circ} 3+24=0 \\
A_{y}=-12.0 \mathrm{kN} \quad \downarrow
\end{array}
$$

Member $\boldsymbol{A B}$
$+\quad \Sigma M_{B}=0:\left(25.46 \sin 45^{\circ}\right)(1.5)+\left(25.46 \cos 45^{\circ}\right)(1.5)+(18)(4.5)+A_{x}(6)+12(3)=0$ $A_{x}=-28.5 \mathrm{kN} \longleftarrow$
$\xrightarrow{+} \Sigma F_{x}=0: \quad-28.5+18+25.46 \cos 45^{\circ}-B_{x}=0$

$$
B_{x}=7.5 \mathrm{kN}, \leftarrow
$$

$\begin{array}{rr}\uparrow \Sigma F_{y}=0: & -12-25.46 \sin 45^{\circ}+B_{y}=0 \\ B_{y}=30.0 \mathrm{kN}, \uparrow\end{array}$

Member $\boldsymbol{C B}$

$\xrightarrow{+} \Sigma F_{x}=0: \quad 7.5+8.49 \cos 45^{\circ}+6-C_{x}=0$

$$
C_{x}=19.50 \mathrm{kN}, \leftarrow
$$

Analysis of Simple Diaphragm and shear Wall Systems

Example 2-12

Assume the wind loading acting on one side of a two-story building is as shown in the figure below. If shear walls are located at each of the corners as shown and flanked by columns, determine the shear in each panel located between the floors and the shear along the columns.

SOLUTION

+) $\Sigma M=0$:

$$
F_{v}(3)-12(4)=0
$$

$$
F_{v}^{\prime}=16 \mathrm{kN}
$$

$+\Sigma M=0$:

$$
\begin{aligned}
F_{v}^{\prime}(3)-32(4) & =0 \\
F_{v}^{\prime} & =42.7 \mathrm{kN}
\end{aligned}
$$

$\stackrel{1}{3} \mathrm{~m}$

