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! Idealized Structure
! Principle of Superposition
! Equations of Equilibrium
! Determinacy and Stability

! Beams
! Frames
! Gable Frames

! Application of the Equations of Equilibrium
! Analysis of Simple Diaphragm and Shear

Wall Systems Problems

Analysis of Statically Determinate 
Structures
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Classification of Structures

� Support Connections

typical �roller-supported� 
connection (concrete)

typical �fixed-supported� 
connection (concrete)

typical �pin-supported� 
connection (metal)

stiffeners

weld

weld
typical �fixed-supported� 

connection (metal)
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fixed-connected joint

pin-connected joint fixed support

A
B

P

actual beam

L/2 L/2

torsional spring joint

pin support

torsional spring support

idealized beam

A B

L/2 L/2

P
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One unknown. The reaction is a
force that acts perpendicular to 
the surface at the point of contact.

One unknown. The reaction is a
force that acts perpendicular to 
the surface at the point of contact.

F

One unknown. The reaction is a
force that acts in the direction of 
the cable or link.

One unknown. The reaction is a
force that acts perpendicular to 
the surface at the point of contact.

Type of 
Connection

Idealized 
Symbol Number of UnknownsReaction

Table 2-1 Supports for Coplanar Structures

(3)

F

(4)

F

(1)
θ Light 

cable
θ θ

rockers

(2)
rollers
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fixed-connected collar

Two unknowns. The reactions 
are two force components.

Fy

Fx

Type of 
Connection

Idealized 
Symbol Number of UnknownsReaction

F
M Two unknowns. The reactions 

are a force and moment.

Three unknowns. The reactions 
are the moment and the two force
components.

M
Fy

Fx

(7)

fixed support

(5)

Smooth pin or hinge

(6)

slider
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� Idealized Structure.

F

3 m

4 m

A

B

actual structure idealized structure

3 m

4 m

A

B

F
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idealized framing plan

A

B

C

D
joist

slab column

girder

fixed-connected beam

idealize beam

fixed-connected overhanging beam

Idealized beam
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idealized framing plan

idealized framing plan
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� Tributary Loadings.

stringer

floor beam

girder

slab

deck girder

pier

veihicle
slab

stringer

floor beam

girder
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wall 
footing

slab on grade column

landing

stairsfoundation
wall

basement

1st floor

supported slab

2nd floor

beam

beam joist slab

joist

spread 
footing

spandrel
beam
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A B

C D

E F

idealized framing plan

4 m

4 m
2 m

2 m

A

B

C

D
E

F

0.5 kN/m2

One-Way System.

C D

4 m

idealized beam

1 m

1 m

1 m

1 m

1 kN/m

2 kN 2 kN

idealized girder

F B

2 m 2 m

2 kN1 kN 1 kN
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A B

C D

E F

Idealized framing plan
for one-way slab action
requires 2/ 12 ≥LL

L2

L1

L1
L1/2
L1/2

concrete slab is
reinforced in two 
directions, poured 
on plane forms

A
girder

beam
column
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6 m

4 m

idealized framing plan

A B

C D

L2/L1 = 1.0 < 2

4 m

4 m

idealized framing plan

A B

C D

L2/L1 = 1Two-Way System.

2 m

4 m

4 m

A

BC

D

0.5 kN/m2 45o 45o

2 m

45o45o

2 m 2 m

A C

idealized beam

1 kN/m

2 m 2 m

A B

1kN/m

2 m 2 m 2 m

2 m 2 m

A B

idealized beam, all

1 kN/m

2 m 2 m

1 kN/m
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Principle of Superposition

  P1

d

+

Two requirements must be imposed for the principle
of superposition to apply :

       1. The material must behave in a linear-elastic 
manner, so that Hooke�s law is valid, and therefore 
the load will be proportional to displacement.

  σ = P/A
δ = PL/AE

       2. The geometry of the structure must not 
undergo significant change when the loads are 
applied, i.e., small displacement theory applies. 
Large displacements will significantly change
and orientation of the loads. An example would
be a cantilevered thin rod subjected to a force at 
its end.

=

  P = P1 + P2

d

   P2

d
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Equations of Equilibrium

ΣFx = 0 ΣFy = 0 ΣFz = 0

ΣMx = 0 ΣMy = 0 ΣMz = 0

V

internal loadings

N
M M

N
V
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Determinacy and Stability

r = 3n, statically determinate

r > 3n, statically indeterminate

n = the total parts of structure members.
r = the total number of unknown reactive force and moment components 

� Determinacy
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Example 2-1

Classify each of the beams shown below as statically determinate or statically
indeterminate. If statically indeterminate, report the number of degrees of
indeterminacy. The beams are subjected to external loadings that are assumed to
be known and can act anywhere on the beams.

hinge

hinge
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SOLUTION

r = 3, n = 1, 3 = 3(1)   Statically determinate

r = 5, n = 1, 5 - 3(1) = 2  Statically  indeterminate to the second degree

r = 6, n = 2, 6 = 3(2)     Statically  determinate

r = 10, n = 3, 10 - 3(3) = 1                             Statically  indeterminate to the first degree

hinge
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Example 2-2

Classify each of the pin-connected structures shown in figure below as statically
determinate or statically indeterminate. If statically are subjected to arbitrary
external loadings that are assumed to be known and can act anywhere on the
structures.
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SOLUTION

r = 7, n = 2, 7 - 3(2) = 1                  Statically indeterminate to the first 
 degree

r = 9, n = 3, 9 = 3(3) Statically determinate
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r = 10, n = 2, 10 - 6 = 4                    Statically indeterminate to the fourth
degree

r = 9, n = 3, 9 = 3(3)         Statically determinate
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Example 2-3

Classify each of the frames shown in figure below as statically determinate or
statically indeterminate. If statically indeterminate, report the number of degrees
of indeterminacy. The frames are subjected to external loadings that are assumed
to be known and can act anywhere on the frames.

B

A

C

D
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B

A

C

D

SOLUTION

r = 9, n = 2, 9 - 6 = 3           Statically indeterminate to the third degree

r = 15, n = 3, 15 - 9 = 6             Statically indeterminate to the sixth degree
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� Stability

Partial Constrains

A

P P

A
MA

FA

r < 3n, unstable

>r    3n, unstable if member reactions are concurrent 
            or parallel or some of the components form 
            a collapsible mechanism
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Improper Constraints

P

A B C

d

O O

P

A B C

dFA

FB

FC

A B CP A B CP

FA FB FC
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Example 2-4

Classify each of the structures in the figure below as stable or unstable. The
structures are subjected to arbitrary external loads that are assumed to be known.

hinge
A B

C

A
B

C

A

B

A
B

C
D

A

B
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SOLUTION

hinge
A B

C

The member is stable since the reactions are non-concurrent and nonparallel.
It is also statically determinate.

The compound beam is stable. It is also indeterminate to the second degree.

The compound beam is unstable since the three reactions are all parallel.

A

B

A
B

C
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The member is unstable since the three reactions are concurrent at B.

The structure is unstable since r = 7, n = 3, so that, r < 3n, 7 < 9. Also, this can
be seen by inspection, since AB can move horizontally without restraint.

A
B

C
D

A

B
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Ay

Ax

P1

P2 Cx

Application of the Equations of Equilibrium

A
B

C

D

E

P1

P2

Dx

Dy

Dx

Bx

By

Bx

By

Ey

Ex

Ex

P2

P1

Ay

Ax

Cx

r = 9, n = 3, 9 = 3(3); statically determinate
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A
B

C
P2

P1

B

P2

P1 Ay

Ax

Cy

Cx

P1

P2

Ay

Ax

Cy

Cx

Bx

Bx

By

r = 6, n = 2, 6 = 3(2); statically determinate
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Example 2-5

Determine the reactions on the beam shown.

3 m 1 m 2 m

70 kN�m

150 kN
60o0.3 mA

B
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SOLUTION

+ ΣMA = 0: By(4) - (229.5)(3) + (132.5)(0.3) -70 = 0
       By = 179.69 kN, ↑

ΣFy = 0:+ Ay - 229.5 + 179.69 = 0
            Ay = 49.81 kN ,  ↑

ΣFx = 0:+ Ax - 132.5 = 0:  Ax = 132.5 kN , →   

3 m 1 m 70 kN�m

0.3 m

Ay

Ax

By

265 cos 60o = 132.5 kN

265 sin 60o = 229.5 kN

3 m 1 m 2 m

70 kN�m

265 kN
60o0.3 mA

B
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Example 2-6

Determine the reactions on the beam shown.

A

15 kN/m

5 kN/m

12 m
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SOLUTION

A

15 kN/m
5 kN/m

12 m

ΣFx = 0:+ Ax = 0

ΣFy = 0:+ Ay - 60 - 60 = 0
               Ay = 120 kN , ↑

+ ΣMA = 0: MA - (60)(4) - (60)(6) = 0
               MA = 600 kN�m

12 m

10 kN/m

(1/2)(12)(10) = 60 kN

4 m

6 m

(5)(12) = 60 kN

5 kN/m
Ax

Ay

MA
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Example 2-7

Determine the reactions on the beam shown. Assume A is a pin and the support at
B is a roller (smooth surface).

A

3 m

2 m4 m

7 kN/m

B
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SOLUTION

+ ΣMA = 0: -28(2) + NBsin 33.7(6) + NBcos 33.7(3) = 0
                        NB = 9.61 kN

ΣFx = 0:+ Ax - NBcos 33.7 = 0; Ax = 9.61cos 33.7 = 8 kN , →  

ΣFy = 0:+ Ay - 28 + 9.61cos33.7 = 0
                             Ay = 22.67 kN , ↑

tan-1(3/2) = 56.3oAx

Ay

NB

90o-56.3o = 33.7o28 kN

2 m

6 m

3 m

A

3 m

2 m4 m

7 kN/m

B
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Example 2-8

The compound beam in figure below is fixed at A. Determine the reactions at A,
B, and C. Assume that the connection at pin and C is a rooler.

hinge
A

B C

6 m 4 m

6 kN/m
8 kN�m
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8 kN�m

Cy

Bx

By

+ ΣMA = 0:

Member AB

ΣFx = 0:+

ΣFy = 0:+

MA - 36(3) + 2(6) = 0
           MA = 96 kN�m

Ax - B = 0 ; Ax = Bx = 0

Ay - 36 + 2 = 0
             Ay = 34 kN , ↑

Bx
Ax

Ay

MA

36 kN

3 m
6 m

By

Cy - By = 0; 
By = Cy = 2 kN , ↑

+ ΣMB = 0:

Member BC

ΣFx = 0:+

ΣFy = 0:+

Cy(4) - 8 = 0
           Cy = 2 kN , ↑

Bx = 0

SOLUTION

hinge
A

B C

6 m 4 m

6 kN/m
8 kN�m
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Example 2-9

The side girder shown in the photo supports the boat and deck. An idealized
model of this girder is shown in the figure below, where it can be assumed A is a
roller and B is a pin. Using a local code the anticipated deck loading transmitted
to the girder is 6 kN/m. Wind exerts a resultant horizontal force of 4 kN as
shown, and the mass of the boat that is supported by the girder is 23 Mg. The
boat�s mass center is at G. Determine the reactions at the supports.

6 kN/m

1.6 m 1.8 m 2 m

4 kN
0.3 m

A B
C D

G roller pin
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4 kN
0.3 m C D

G

By

Bx

6(3.8) = 22.8 kN

1.9 m

Ay

2 m

23(9.81) kN = 225.6 kN
5.4 m

+ ΣMB = 0:

6 kN/m

1.6 m 1.8 m 2 m

4 kN
0.3 m

A B
C D

G

SOLUTION

ΣFx = 0:+

ΣFy = 0:+

4 - Bx = 0
      Bx = 4 kN , ←   

22.8(1.9) -Ay(2) + 225.6(5.4) 
-4(0.3) = 0

                 Ay = 630.2 kN , ↑

-225.6 + 630.2 - 22.8 + By = 0
             By = 382 kN , ↑

roller pin
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Example 2-10

Determine the horizontal and vertical components of reaction at the pins A, B,
and C of the two-member frame shown in the figure below.

8 kN

2 m

3 kN/m

A

B C
2 m

2 m

1.5 m

4
3

5
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6 kN

1 m 1 m

8 kN

2 m

1.5 m

Bx

By

Ax

Ay

Cx

Cy

Bx

By ΣFy = 0:+

+ ΣMA = 0:

Member AB

+ ΣMC = 0:

Member BC

(3/5)8

SOLUTION

ΣFx = 0:+

Member BC

ΣFx = 0:+

ΣFy = 0:+

(4/5)8

-By(2) +6(1) = 0
                By = 3 kN , ↑

-8(2) - 3(2) +Bx(1.5)  = 0
                Bx = 14.7 kN , ←

Ax + (3/5)8 - 14.7 =  0
         Ax = 9.87 kN , →  

Cx - Bx = 0; Cx = Bx = 14.7 kN , ←

3 - 6 + Cx = 0 ;   Cy = 3 kN , ↑

 Ay - (4/5)8 - 3 = 0
             Ay = 9.4 kN , ↑

8 kN

2 m

3 kN/m

A

B C
2 m

2 m

1.5 m

4
3

5
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Example 2-11-1

From the figure below, determine the horizontal and vertical components of
reaction at the pin connections A, B, and C of the supporting gable arch.

A

B

C

3 m

3 m

3 m 3 m

15 kN
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A

B

C

3 m

3 m

3 m 3 m

15 kN

SOLUTION

Ax

Ay

Cx

Cy

+ ΣMA = 0:

Entire Frame

0)3(15)6( =−yC

ΣFy = 0:+  Ay + 7.5 = 0

Ay = -7.5 kN , ↓ 

Cy = 7.5 kN , ↑
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B

C

3 m

3 m

3 m

Cx

7.5 kN 

A

B

3 m

15 kN

Ax

3 m

3 m

7.5 kN 

Bx

By

Bx

By

Member BC

ΣFx = 0:+ 075.3 =− xC+ ΣMB = 0:

Member AB

0)3(5.7)6()3(15 =++ xA

ΣFx = 0:+ 01525.11 =−+− xB

ΣFy = 0:+ 05.7 =+− By

Ax = -11.25 kN , ←   

Bx = 3.75 kN , ←

By = 7.5 kN

3.75 kN=

7.5 kN =

Cx = 3.75 kN
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2 m
2 m

3 m

3 m

4 m
4 m 3 m

3 m
wind

A

B

C

Example 2-11-2

The side of the building in the figure below is subjected to a wind loading that
creates a uniform normal pressure of 1.5 kPa on the windward side and a suction
pressure of 0.5 kPa on the leeward side. Determine the horizontal and vertical
components of reaction at the pin connections A, B, and C of the supporting gable
arch.
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SOLUTION

2 m
2 m

3 m

3 m

4 m
4 m 3 m

3 m
wind

A

B

C

A uniform distributed load on the 
windward side is

(1.5 kN/m2)(4 m) = 6 kN/m

A uniform distributed load on the 
leeward side is

(0.5 kN/m2)(4 m) = 2 kN/m

6 kN/m

6 kN/m

2 kN/m

2 kN/m
A

B

C

3 m

3 m

3 m 3 m
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+ ΣMA = 0:

Entire Frame

ΣFy = 0:+

B

18 kN

25.46 kN

6 kN

8.49 kN

Ax

Ay

45o

25.46 sin 45

25.46 cos 45 45o

8.49 cos 45

8.49 sin 45

Cx

Cy1.5 3 m 1.5

3 m

1.5m

-(18+6)(1.5) - (25.46+8.49)cos 45o(4.5) - (25.46 sin 45o)(1.5)
+ (8.49 sin 45o)(4.5) + Cy(6)  = 0

                Cy = 24.0 kN , ↑

 Ay - 25.46 sin 45o + 8.49 sin 45o 3 + 24 = 0
             Ay = -12.0 kN
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6 kN

8.49 kN
45o

8.49 cos 45

8.49 sin 45

Cx

Cy = 24.0 kN

18 kN

25.46 kN

Ax

Ay= 12.0 kN   

45o

25.46 sin 45

25.46 cos 45

Ax

Bx

By

Bx

By

+ ΣMB = 0:

Member AB

1.51.5

3

1.5

1.5

ΣFx = 0:+

(25.46 sin 45o)(1.5) + (25.46cos 45o)(1.5) + (18)(4.5) + Ax(6) + 12(3) = 0
                Ax = -28.5 kN

ΣFy = 0:+

ΣFx = 0:+
Member CB

7.5 + 8.49 cos 45o + 6 - Cx =  0
Cx = 19.50 kN , ←

-28.5 + 18 + 25.46 cos 45o - Bx =  0
Bx = 7.5 kN , ←

-12 - 25.46sin 45o +  By  = 0
             By = 30.0 kN , ↑
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roof diaphragm

floor diaphragm

AB
B

A

A B

A

B

F

Analysis of Simple Diaphragm and shear Wall Systems

F/8
F/8

F/8

F/8

A

F/8

F/8

A

F/8

F/8
A

F/8

F/8

A

F/8

F/8

F/2

F/2

F/8

F/8
F/8

F/8
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A
B

B
A

C
D

C
D

Wind F
second floor 
diaphragm

shear walls

roof diaphragm

2st floor

1st floor

roof diaphragm

F/4

F/4

F/2

F/16

F/16

A

F/16

F/16
F/16

F/16

3F/16

3F/16
3F/16

3F/16

3F/16

3F/16

B

F/16
F/16

F/16

F/16

3F/16

3F/16
3F/16

3F/16

F/4

F/4

F/4

F/4
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Example 2-12

Assume the wind loading acting on one side of a two-story building is as shown
in the figure below. If shear walls are located at each of the corners as shown and
flanked by columns, determine the shear in each panel located between the floors
and the shear along the columns.

30 m 20 m

1.2 kPa

0.8 kPa

3 m 3 m

A
B

B
A

C
D

C
D

4 m
4 m
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SOLUTION

30 m 20 m

1.2 kPa

0.8 kPa

3 m 3 m

A
B

B
A

C
D

C
D

FR1 = 0.8(103) N/m2 (20 m)(4 m) = 64 kN

FR2 = 1.2(103) N/m2 (20 m)(4 m) = 96 kN

FR1 /2 = 32

FR2 /2 = 48

2st floor

1st floor

roof diaphragm

FR1 /2
 = 32 kN

32 + 48 kN

FR2 /2 
= 48 kN

F/8 = 12 kN
12 kN

12 kN

12 kN

12 kN

A

12 kN

12 kN
12 kN

12 kN

32 kN

32 kN
32 kN

32 kN

32 kN

32 kN
32 kN

32 kN

32 kN

32 kN

B

40 kN

40 kN

40 kN

40 kN

4 m
4 m

FR1

FR2
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Fv
Fv

3 m

4 m

12 kN

12 kN

+ ΣM = 0:

Fv(3) - 12(4) = 0
Fv = 16 kN

+ ΣM = 0:

F´v(3) - 32(4) = 0
F´v = 42.7 kN

F´v

3 m

4 m

32 kN

32 kN

F´v


