ENCE 353 Final Exam, Open Notes and Open Book

Name:

Exam Format and Grading. The exam will be 2 hrs plus five minutes to read the questions.
Partial credit will be given for partially correct answers, so please show all your working.

Question	Points	Score
1	20	
2	8	
3	12	
4	10	
Total	50	

Question 1: 20 points

COMPULSORY: Moment-Area, Virtual Work. Figure 1 is a front elevation view of a simple beam structure carrying two external loads P. The beam has section properties EI near the supports and 2EI in the center section.

Figure 1: Simple beam structure (symmetric loads P).
[1a] (4 pts) Use the method of moment area to show that the end rotation at A (measured clockwise) is:

$$
\begin{equation*}
\theta_{A}=\frac{P L^{2}}{E I} \tag{1}
\end{equation*}
$$

[1b] (4 pts) Use the method of moment area to show that the vertical beam deflection at B is:

$$
\begin{equation*}
\triangle_{B}=\frac{13}{12} \frac{P L^{3}}{E I} \tag{2}
\end{equation*}
$$

[1c] (4 pts) A function is said to be even if it has the property $f(x)=f(-x)$ (i.e., it is symmetric about the y axis). And a function is said to be odd if it has the property $\mathrm{g}(\mathrm{x})=-\mathrm{g}(-\mathrm{x})$ (i.e., it is skew-symmetric about the y axis). One example of an even function is $\cos (x)$, and one example of an odd function is $\sin (\mathrm{x})$.

Using high-school-level calculus (or otherwise), show that:

$$
\begin{equation*}
\int_{-h}^{h} f(x) g(x) d x=0 . \tag{3}
\end{equation*}
$$

Please show all of your working.

Figure 2 shows the same beam structure, but now the external loads are rearranged so that one load points down and one load points up.

Figure 2: Simple beam structure (skew-symmetric loads P).
[1d] (4 pts) Use the method of virtual work and a coordinate system positioned at B to show that the vertical displacement of B is zero, i.e., $\triangle_{B}=0$.

Now consider the problem.

Figure 3: Simple beam structure (one external load 2P).
[1e] (4 pts) Use your answers from parts [1b] and [1d] to write down an expression for the vertical deflection at B due to the loading pattern shown in Figure 3. Note: You should find this is a one line answer.

Question 2: 8 points

Consider the two-span beam structure shown in Figure 1.

Figure 4: Front elevation view of a cantilevered beam structure.
[2a] (4 pts) Use the Muller-Breslau Principle to compute the influence line diagram for the vertical reaction at \mathbf{A}.
[2b] (4 pts) Now suppose that span B-C carries a uniform load of $w_{o} / L \mathrm{~N} / \mathrm{m}$. Using your influence line diagram from Part [2a], compute the vertical reaction at \mathbf{A}.

Question 3: 12 points

Consider the truss structure shown in Figure 5.

Figure 5: Elevation view of a pin-jointed truss.

The horizontal and vertical degrees of freedom are fully-fixed at supports A and D. The truss carries vertical loads P_{e} and P_{h} at nodes E and H , respectively. All frame members have cross section properties AE.
[3a] (2 pts) Use the method of joints to identify all of the zero-force members. Label these members on Figure 5.
[3b] (3 pts) Use the principle of virtual forces to compute the vertical deflection at node E due to $\operatorname{load} P_{e}$ alone (i.e., $P_{h}=0$).
[3c] (3 pts) Use the principle of virtual forces to compute the vertical deflection at node H due to load P_{h} alone (i.e., $P_{e}=0$).
[3d] (4 pts) Use the principle of virtual forces to compute the two-by-two flexibility matrix connecting the vertical displacements at points E and H to applied loads P_{e} and P_{h}, i.e., as a function of P_{e}, P_{h}, L and AE.

$$
\left[\begin{array}{l}
\triangle_{e} \tag{4}\\
\triangle_{h}
\end{array}\right]=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
P_{e} \\
P_{h}
\end{array}\right]
$$

Question 3 continued ...

Question 4: 10 points

Figure 6 is an elevation view of a propped cantilever structure that carries an external point load P at its tip.

Figure 6: Elevation view of a propped cantilevel beam.

The structural system has constant section properties EI along the beam, and is supported by a truss element having section properties EA.
[4a] (1 pt) Compute the degree of indeterminacy for the propped cantilever beam.
[4b] (6 pt) Show that the axial force in the truss element, P_{o}, is given by:

$$
\begin{equation*}
P_{o}=P\left(\frac{9 A L^{2}}{I+9 A L^{2}}\right) \tag{5}
\end{equation*}
$$

Question 4b continued ...
[4c] (3 pt) Explain how the value of bending moment at the cantilever support (i.e., at point A) will change as: (1) the truss element cross section area $\mathrm{A} \rightarrow 0$, and (2) the truss element cross section area $\mathrm{A} \rightarrow \infty$.

