ENCE 353 Midterm II, Open Notes and Open Book

Name:

Exam Format and Grading. Partial credit will be given for partially correct answers, so please show all your working.

Question	Points	Score
1	5	
2	7	
3	8	
Total	20	

Question 1: 5 points

Consider the two-span beam structure shown in Figure 1.

Figure 1: Front elevation view of a cantilevered beam structure.
[1a] (3 pts). Use the Muller-Breslau Principle to compute the influence line diagram for the vertical reaction at A.
[1b] (2 pts). Now suppose that span B-C carries a uniform load of $w_{o} / L \mathrm{~N} / \mathrm{m}$. Using your influence line diagram from Part [1a], compute the vertical reaction at A.

Question 2: 7 points

The cable structure shown in Figure 2 carries a uniform load $w_{o} \mathrm{~N} / \mathrm{m}$ along its entire length.

Figure 2: Elevation view of a pedestrian swing bridge.
[2a] (3 pts). Starting from first principles (i.e., the differential equation), show that cable profile is given by the equation

$$
\begin{equation*}
y(x)=\frac{w_{o} x^{2}}{2 H}+\left(1-\frac{15 w_{o}}{H}\right) x . \tag{1}
\end{equation*}
$$

Now let us assume that the minumum value of the cable profile occurs at $\mathrm{x}=10$.
[2b] (2 pts). Show that the horizontal cable force is:

$$
\begin{equation*}
H=5 w_{o} . \tag{2}
\end{equation*}
$$

[2c] (2 pts). Derive a simple expression for the maximum tensile force in the cable.

Question 3: 8 points

Consider the cantilevered beam structure shown in Figure 3.

Figure 3: Front elevation view of a cantilevered beam structure.

Notice that segments A-B and B-C have cross-sectional properties EI and 2EI, respectively.
[3a] (2 pts) Compute and draw the $\mathrm{M}(\mathrm{x}) / \mathrm{EI}$ diagram for the complete beam A-B-C.
[3b] (2 pts) Draw and label a diagram showing how the rotation at A is related to the beam deflections at points B and C.
[3c] (2 pts) Use the method of moment-area to compute the vertical deflection of the beam at point C.
[3d] (2 pts) Draw and label a diagram of the deflected shape. Clearly indicate on your diagram regions of the beam having zero curvature.

