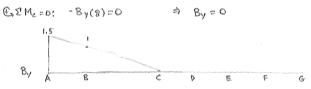

Problem !

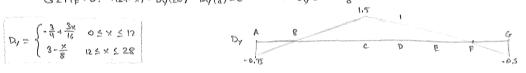


(By)

$$|x| = |x| = |x|$$

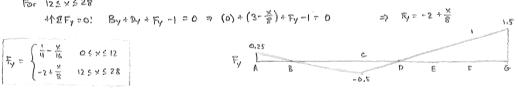
$$B_{y} = \begin{cases} \frac{3}{2} - \frac{x}{8} & 0 \le x \le 12 \\ 0 & 12 \le x \le 28 \end{cases}$$

Note: the FBD stays the same for X greater

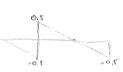

than and less than 12, the equation for

By changes though

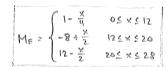
For
$$0 \le x \le 12$$
 $\sqrt{\frac{3}{4}} = \frac{x}{8}$ $\mathbb{C} \mathbb{E} M_{F} = 0$: $1(24-x) - B_{y}(20) - D_{y}(8) = 0$ $\Rightarrow D_{y} = -\frac{3}{4} + \frac{3x}{16}$


$$\Rightarrow D_{v} = 3 - \frac{x}{8}$$

$$D_{y} = \begin{cases} -\frac{3}{4} + \frac{3x}{16} & 0 \le x \le 12\\ 3 - \frac{x}{8} & 12 \le x \le 28 \end{cases}$$


(Fy)

For 125 x 528


$$=0$$
: $B^{n}+D^{n}-1-A^{n}=0 \Rightarrow (\frac{5}{3}-\frac{8}{8})+(-\frac{1}{4}+\frac{18}{38})-1-A^{n}=0$

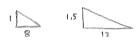
For
$$0 \le x \le 12$$

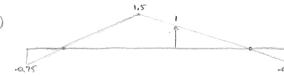
 $+ \uparrow 2 F_y = 0$; $B_y + D_y - 1 - V_E = 0$ $\Rightarrow \left(\frac{3}{2} - \frac{x}{8}\right) + \left(-\frac{3}{4} + \frac{3x}{18}\right) = 1 - V_E = 0$
For $12 \le x \le 2D$
 $+ \uparrow 2 F_y = 0$; $B_y + D_y - 1 - V_E = 0$ $\Rightarrow (0) + \left(3 - \frac{x}{8}\right) - 1 - V_E = 0$
For $20 \le x \le 28$

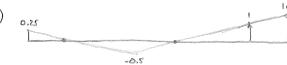
For 205×528

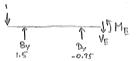
For 125×520

For 205 x 5 28




b) Müller-Bresley Principle





 V_{E}

Split at E, solve for one point to find the rest

(ME)

Replace E with a hinge and push up Solve for a value of ME