ENCE353: Introduction to Structural Analysis Exam #2

Name:	Solution
-------	----------

CSI 3117: 9:00-9:50AM, November 15, 2013 Closed book, closed notes, one sheet of notes and integration tables allowed Show all work

Problem	Points	Score
1	10	10
2	10	10
3	10	10
4	10	10
Total	40	40

Problem 1 (10 Points)

- a) Draw the influence lines for B_y and M_c (Show all values)
- b) Stephanie and Kelsey are delivering a couple animals to Tonia's new zoo. If a **distributed elephant load of 2 k/ft** is located along section AB, and a **giraffe point load of 1.8 k** is at C, using the influence lines, find the vertical reaction at B and the moment at C

Hint: Use the Müller-Breslau principle to save time

b)

$$B_y = 2\left[\frac{1}{2}(1.5+1)(6)\right] + 1.8(0.5) = 15.9 \text{ k}$$
 $M_c = 2\left[\frac{1}{2}(-3)(6)\right] + 1.8(3) = -12.6 \text{ k}$

$$B_y = 15.9 \text{ k}$$

 $M_C = -12.6 \text{ k} \cdot \text{ft}$

Problem 2 (10 Points)

Use the **moment-area** method to determine the deflection at D E = 29,000 ksi, $I = 100 \text{ in.}^4$ for the entire span of the beam Provide the solution in inches

Problem 3 (10 Points)

a) Use virtual work to determine the vertical displacement of C

b) If the reaction at B settles 0.5 in, what is the new value for Δ_{Cy} ?

Area of members: $A_{AB} = A_{AC} = A_{BC} = 3 \text{ in.}^2$ $A_{BD} = A_{CD} = A_{CE} = A_{DE} = 5 \text{ in.}^2$

$$A_{BD} = A_{CD} = A_{CE} = A_{DE} = 5 \text{ in.}^2$$

 $E = 29,000 \, ksi$ for all members

For the given loading, the axial forces are

$$F_{AB}=42 (C)$$

$$F_{AC} = 84.85 (T)$$

$$F_{RC} = 42 (C)$$

$$F_{BD} = 59.40 (C)$$

$$F_{CD}=42\ (T)$$

$$F_{AC} = 84.85 (T)$$
 $F_{BC} = 42 (C)$
 $F_{CE} = 25.46 (C)$ $F_{DE} = 18 (C)$

$$F_{DE} = 18 (C$$

Hint: Solve for the virtual axial forces first. (There will be zero force members)

a) (1)
$$\Delta_{c} = \sum \frac{nNL}{EA}$$
 => $\Delta_{c} = \frac{(1)(-42)(20)}{(24000)(3)} \times 12 = -0.116$ in.
b) (1) $\Delta_{c} + \mathbb{Z}R\Delta_{R} = \sum \frac{nNL}{EA}$ $\Rightarrow \Delta_{c} + (-1)(-0.5) = -0.116$ => $\Delta_{c} = -0.616$ in.

a)
$$\Delta_{Cy} = 0.116 \text{ in } 4$$

Problem 4 (10 Points)

Using **virtual work**, determine the value of I that will provide a displacement of 0.5 in. at point B. Assume $E = 29,000 \, ksi$ for the length of the beam.

