ENCE 353 Homework 5

Due date: October 23, 2013.

Question 1: 10 points

Figure 1 shows an elevation view of a pre-fabricated steel building frame that is subject to a variety of snow and wind loadings.

Figure 1: Elevation view of pre-fabricated steel building frame subject to snow and wind loadings.

Assuming that the frames are spaced at 20 ft centers, and that the foundation-level supports and roof apex are pinned (i.e., the frame can be modeled as a three-pinned arch), compute the vertical and horizontal reactions at the base supports.

Question 2: 10 points

The cable structure shown in Figure 2 carries a uniform load $w_{o} \mathrm{~N} / \mathrm{m}$ along its entire length.

Figure 2: Elevation view of a pedestrian swing bridge.
[2a] Starting from first principles (i.e., the differential equation), show that cable profile is given by the equation

$$
\begin{equation*}
y(x)=\frac{w_{o} x^{2}}{2 H}+\left(1-\frac{15 w_{o}}{H}\right) x . \tag{1}
\end{equation*}
$$

Now let us assume that the minumum value of the cable profile occurs at $\mathrm{x}=10$.
[2b] Show that the horizontal cable force is:

$$
\begin{equation*}
H=5 w_{o} . \tag{2}
\end{equation*}
$$

[2c] Derive a simple expression for the maximum tensile force in the cable.

Question 3: 10 points

An inclined pedestrian walkway is supported by two identical cables and a system of closely space hangers. The cable towers are 40 m apart with one 4 m higher than the other. One end of the walkway is 5 m below the cables at the high tower and 3 m below the cables at the low tower.

Figure 3: Schematic of walkway dimension (not to scale).
If the smallest possible hanger is 1 m long, and the walkway weighs $5 \mathrm{kN} / \mathrm{m}$, determine:

1. H, the horizontal component of force in the cable?
2. The maximum force in the cable?
3. The length of the cable?
