Function Approximation

Mark A. Austin
University of Maryland
austin@umd.edu
ENCE 201, Fall Semester 2023

September 25, 2023

Overview

(1) Function Approximation

- Polynomial Approximation, Fourier Series, Machine Learning
(2) Taylor Series
- Motivating Idea
- Taylor Series and Maclaurin Expansions
- Remainder Function
- Ratio Test and Interval of Convergence
(3) Solved Problems
- Example 1: Taylor Series for e^{x} about $x=0$.
- Example 2: Taylor Series for $\cos (x)$ about $x=0$.
(4) Fourier Series (and Fourier Integral)
(5) Python Code Listings

Function

Approximation

Motivating Ideas

Function Approximation

A function approximation asks us to select a function, $g(x)$, among a well-defined set of options that approximates - closely matches a second function, $f(x)$, in a task-specific way.

Approximation Examples: Many approaches ...

Polynomial Approximation

Fourier Series

Machine Learning

Strategy 1: Polynomial Approximation

Polynomial Approximation

Replace function $f(x)$ by a simplier polynomial approximation $g(x)$. Then, use $g(x)$ in computations instead of $f(x)$.

Example 1: Replace $y=f(x)=e^{-x}$ by a quadratic approximation:

$$
\begin{equation*}
f(x)=e^{-x} \quad \longrightarrow \quad g(x)=1-x+\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

Example 2: Replace $y=\sin (x)$ on $x \in[0, \pi]$ by a quadratic approximation:

$$
\begin{equation*}
f(x)=\sin (x) \quad \longrightarrow \quad g(x)=\frac{4 x}{\pi^{2}}[\pi-x] . \tag{2}
\end{equation*}
$$

Strategy 2: Fourier Series

Fourier Series

A Fourier series is an expansion of a periodic function $f(x)$ in terms of an infinite sum of trigonometric (i.e., sines and cosines) and/or exponential functions.

Example 1: Progressive refinement of sawtooth function:

Strategy 3: Machine Learning

Neural Network

Use observable (or experimentally measured) data to train a neural network to capture (or estimate) input-to-output functionality.

- Neural networks are universal function approximators, no matter how complex:
- Neural network architectures are highly scalable and flexible.

Caveat: Very large neural networks may be close to impossible to train and generalize correctly $\rightarrow \mathrm{Al}$ chips.

Strategy 3: Machine Learning

Example 1: Neural Network with One Hidden Layer:

Data inputs x_{1} and x_{2} are transformed into a prediction $f\left(x_{1}, x_{2}\right)$.

Strategy 3: Machine Learning

Example 2: Learn how to classify univariate time series as belonging to one of six categories:

Data

- UCI Synthetic Control Chart Time Series Data Set contains 600 sequences of data.
- Partition data: 450 items for training; 150 items for testing.

Six Categories of Datastream

- A and E: Decreasing and Increasing Trend.
- B: Cyclic.
- C: Normal.
- D and F: Upward and Downward Shift.

Strategy 3: Machine Learning

Representative Data Streams:

Strategy 3: Machine Learning

Training and Testing Corpus

CSV Data File Format and Label Mappings

Features: 0.csv	
$20.59 \longleftarrow$	line 01
18.51	
\vdots	\vdots
\vdots	\vdots
16.32	
$10.72 \longleftarrow$	line 60

Strategy 3: Machine Learning

RNN Architecture + Sequences of Feature and Label vectors

Strategy 3: Machine Learning

Training the Model for 40 Epochs:

```
int nEpochs = 40;
net.fit(trainData, nEpochs);
```

Evaluation Metrics and Confusion Matrix:

```
Accuracy: 0.8867 Recall: 0.8890 <--- It works!
Precision: 0.8886 F1 Score: 0.8883
\begin{tabular}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{tabular}
\begin{tabular}{rrrrrr:l}
26 & 0 & 0 & 0 & 0 & 0 & \(0=0\) \\
0 & 29 & 0 & 0 & 0 & 0 & \(1=1\) \\
0 & 0 & 15 & 0 & 7 & 0 & \(2=2\) \\
0 & 0 & 0 & 20 & 0 & 1 & \(3=3\) \\
0 & 0 & 9 & 0 & 21 & 0 & \(4=4\) \\
0 & 0 & 0 & 0 & 0 & 22 & \(5=5\)
\end{tabular}
```


Taylor Series

Taylor Series

(Brook Taylor, 1715)

Motivating Idea

Let $y=f(x)$ be a smooth differentiable function.

Given $f(x)$ and derivatives $f^{\prime}(a), f^{\prime \prime}(a), f^{\prime \prime \prime}(a)$, etc, the purpose of Taylor's series is to estimate $f(x+h)$ at some distance h from x.

Taylor Series Expansion

Mathematical Expansion.

$$
\begin{equation*}
f(x+h)=\sum_{i=0}^{\infty} \frac{f^{i}(x)}{(i)!} h^{i}=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(x)}{3!} h^{3}+\cdots \tag{3}
\end{equation*}
$$

For a Taylor series approximation containing $(n+1)$ terms

$$
\begin{equation*}
f(x+h)=\sum_{i=0}^{i=n} \frac{f^{i}(x)}{(i)!} h^{n}+R_{n}(x) \tag{4}
\end{equation*}
$$

The remainder, $R_{n}(x)$, after truncation is:

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c(x+h))}{(n+1)!} h^{(n+1)} \quad \text { with } \quad[x \leq c \leq x+h] . \tag{5}
\end{equation*}
$$

Taylor Series Expansion

We can also write:

$$
\begin{equation*}
f(x+h)=\sum_{i=0}^{i=n} \frac{f^{i}(x)}{(i)!} h^{n}+O\left(h^{(n+1)}\right) \tag{6}
\end{equation*}
$$

The big-O notation $O\left(h^{n}\right)$ indicates how quickly the error will change as a function of h.

- $\mathrm{O}(0) \rightarrow$ Magnitude of error is constant, regardless of h.
- $\mathrm{O}(\mathrm{h}) \rightarrow$ Magnitude of error proportional to h.
- $\mathrm{O}\left(h^{2}\right) \rightarrow$ Magnitude of error proportional to h squared.

Maclaurin Series Expansion

Maclaurin Series: A Maclaurin Series is nothing more than a Taylor series expansion about a $=0$, i.e.,

$$
\begin{equation*}
f(h)=f(0)+\frac{f^{\prime}(0)}{1!} h+\frac{f^{\prime \prime \prime}(0)}{2!} h^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} h^{3}+\cdots \tag{7}
\end{equation*}
$$

Trigonometric Series

$$
\begin{aligned}
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

Surprisingly, these series converge for all values of x.

Remainder Function

Remainder Function. The formula for $R_{n}(x)$,

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c(x+h))}{(n+1)!} h^{(n+1)} \quad \text { with } \quad[x \leq c \leq x+h] \tag{8}
\end{equation*}
$$

This formula is derived via the "mean value theorem" (see extra slides for details) and simply states there exists a point $c(x+h)$ such that:

$$
\begin{equation*}
\frac{f(x+h)-f(x)}{(x+h-x)}=f^{1}(c) \rightarrow f(x+h)=f(x)+f^{1}(c)(h) \tag{9}
\end{equation*}
$$

We can estimate $R_{n}(x)$ without knowing $c(x+h)$ explicitly.

Ratio Test and Interval of Convergence

For the power series centered about $x=a$,

$$
\begin{equation*}
P(a+h)=C_{0}(a)+C_{1}(a) h+C_{2}(a) h^{2}+C_{3}(a) h^{3}+C_{4}(a) h^{4}+\cdots \tag{10}
\end{equation*}
$$

suppose that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{\left|C_{n}(a)\right|}{\mid C_{n+1}(a)}\right]=R . \tag{11}
\end{equation*}
$$

then:

- If $\mathrm{R}=\infty$, then the series converges for all values.
- If $0<R<\infty$, then the series converges for all $h<R$.
- If $R=0$, then the series converges only for $h=0$.

We call R the radius of convergence.

Solved Problems

Example 1: Taylor Series Expansion for e^{x}

Problem 1. Approximating e^{x} about $x=0$.

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots \tag{12}
\end{equation*}
$$

Linear and quadratic approximations:

Example 1: Taylor Series Expansion for e^{x}

Now lets predict: $e^{2}=2.71828 * 2.71828=7.38904$.

No Terms	Numerical Estimate
1	1.0000
2	$1+2 \rightarrow 3.0000$
3	$1+2+4 / 2!\rightarrow 5.00000$
4	$1+2+4 / 2!+8 / 3!\rightarrow 6.33333$
5	$1+2+4 / 2!+8 / 3!+16 / 4!\rightarrow 6.99999$

Estimate of Maximum Error: After five terms:

$$
\begin{equation*}
R_{5}(2) \leq \frac{e^{c(2)}}{6!} 2^{6}=\frac{e^{2}}{6!} 2^{6}=\frac{7.38904 * 64}{720}=0.657 \tag{13}
\end{equation*}
$$

The actual error is: 0.389 .

Example 1: Taylor Series Expansion for e^{x}

Test for Convergence. We have:

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{14}
\end{equation*}
$$

The limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{\left|C_{n}(a)\right|}{\mid C_{n+1}(a)}\right]=\lim _{n \rightarrow \infty}\left[\frac{\frac{1}{n!}}{\frac{1}{(n+1)!}}\right]=\lim _{n \rightarrow \infty}(n+1)=\infty . \tag{15}
\end{equation*}
$$

gives $\mathrm{R}=\infty$ and the series converges for all values of x.

Example 1: Taylor Series Expansion for $\exp (x)$

Taylor Series Approximations for $\exp (x)$

Example 2: Taylor Series Expansion for $\cos (x)$

Example 2. Taylor Series expansion for $\cos (x)$ about $x=0$.
We have: $f(0)=\cos (0), f^{1}(0)=-\sin (0)$, and so forth. Hence,

$$
\begin{aligned}
\cos (x) & =\cos (0)-\frac{\sin (0)}{1!} x+\frac{-\cos (0)}{2!} x^{2}+\frac{\sin (0)}{3!} x^{3}+\frac{\cos (0)}{4!} x^{4}+\cdots \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

Can also use the same procedure to show:

$$
\begin{equation*}
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \tag{16}
\end{equation*}
$$

Example 2: Taylor Series Expansion for $\cos (x)$

Test for Convergence. We have:

$$
\begin{equation*}
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \tag{17}
\end{equation*}
$$

Hence, $C_{n}=(-1)^{n} /(2 n)$! and:
$\lim _{n \rightarrow \infty}\left[\frac{\left|C_{n}(a)\right|}{\left|C_{n+1}(a)\right|}\right]=\lim _{n \rightarrow \infty}\left[\frac{\frac{(-1)^{n}}{2 n!}}{\frac{(-1)^{(n+1)}}{(2 n+2)!}}\right]=\lim _{n \rightarrow \infty}(2 n+1)(2 n+2)=\infty$.
The series converges for all real x.

Example 2: Taylor Series Expansion for $\cos (x)$

Taylor Series Approximations for $\cos (\mathrm{x})$

Summary: Taylor Series Expansion

Strengths:

- When they are used to approximate complex functions with polynomials, the latter are much easier to differentiate and integrate.
- Can be easily manipulated to provide finite difference approximations to function derivatives.
- Can be used to get theoretical error bounds.

Weaknesses:

- Taylor series approximations require underlying function to be continuously differentiable.
- Series convergence for a wide range of values may only occur with an unreasonably large number of terms, a task that may be computationally infeasible.

Extra Slides

Extra Slides

Mean Value Theorem

Let function f be continuous on $[a, b]$ and differentiable on $[a, b]$.

There exists a point c in $[a, b]$ such that:

$$
\begin{equation*}
f^{1}(c)=\left[\frac{f(b)-f(a)}{b-a)}\right] . \tag{33}
\end{equation*}
$$

The right-hand side of the equation is the secant line connecting end points.

The green line is the tangent slope at
 point c.

Python Code Listings

Code 1: Taylor Series Approximations for $\cos (x)$

```
# ============================================================================
# TestTaylorSeries02.py: Compute and plot Taylor Series approximations for
# cos(x).
#
# Written By: Mark Austin
August 2023
```



```
import math;
import numpy as np;
import matplotlib.pyplot as plt;
# Taylor series approximation for cos(x) ...
def func_cos(x,n):
    cos_approx = 0
    for i in range(n):
            coeff = (-1)**i
            num = x**(2*i)
            denom = math.factorial(2*i)
            cos_approx = cos_approx + (coeff)*(num/denom)
        return cos_approx
# main method ...
def main():
    print("--- Enter TestTaylorSeries02.main() ... ");
    print("--- ================================================ ... ");
```


Code 1: Taylor Series Approximations for $\cos (x)$

```
# Part 1: Compute x values for numerical computation ...
x = np.linspace( -4.0, 4.0, num = 101)
y = np.cos(x)
print(x)
print(y)
# Part 2: Two-term polynomial approximation: y(x) = 1 - x^2/2! ...
yapprox2 = []
for xi in x:
    yapprox2.append( func_cos(xi,2) );
# Part 3: Three-term polynomial approximation: y(x) = 1 - x^2/2! + x^4/4! ...
yapprox3 = []
for xi in x:
    yapprox3.append(func_cos(xi,3) );
# Part 4: Four-term polynomial approximation: y(x) = 1 - x^2/2! + x^4/4! - x^6/6!
yapprox4 = []
for xi in x:
    yapprox4.append( func_cos(xi,4) );
# Part 5: Five-term polynomial approximation: y(x) = 1 - x^2/2! + x^4/4! - x^6/6! +
yapprox5 = []
```


Code 1: Taylor Series Approximations for $\cos (x)$

```
    for xi in x:
    yapprox5.append( func_cos(xi,5) );
    # Part 6: Plot cos(x) and various polynomial approximations ...
    plt.plot(x, y, label="y(x) = cos(x)", linestyle="-")
    plt.plot(x, yapprox2, label="y(x) = 1-x^2/2!", linestyle="--")
    plt.plot(x, yapprox3, label="y(x) = 1-x^2/2! + x^4/4!", linestyle="--")
    plt.plot(x, yapprox4, label="y(x) = 1-x^2/2! + x^4/4! - x^6/6!", linestyle="--")
    plt.plot(x, yapprox5, label="y(x) = 1-x^2/2! + x^4/4! - x^6/6! + x^8/8!", linestyle=
    plt.title("Taylor Series Approximations for cos(x)")
    plt.xlabel('x')
    plt.ylabel('y')
    plt.grid()
    plt.legend()
    plt.show()
    print("--- ================================================ ... ");
    print("--- Leave TestTaylorSeries02.main() ... ");
# call the main method ...
main()
```

