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ABSTRACT 
A Dynamic Programming formulation is used to  obtain an 

optimal strategy for the handoff problem in cellular radio 
systems. The formulation includes the modeling of the un- 
derlying randomness in received signal strengths and of the 
mobile’s movements. The cost function is designed such that 
there is a cost associated with switching and a reward for 
improving the quality of the call. The optimum decision is 
characterized by a threshold on the difference between the 
measured power that the mobile receives from the base sta- 
tions. Also we study the problem of choosing the “best” fixed 
threshold that minimizes the cost function. The performance 
of the optimal and suboptimal strategies are compared. 

I Introduction 
Wireless networks are experiencing rapid growth, a trend 
likely to continue into the foreseeable future. In both micro 
and macro cellular networks, a key issue for efficient operation 
is the problem of handoffs. A call on a portable/mobile which 
leaves one cell (radio coverage area) and enters a neighboring 
cell must be transferred to the base station of this neighboring 
(new) cell. Each handoff involves a signaling cost. Because 
of statistical fluctuations in signal strength due to fading, a 
call may get bounced back and forth between neighboring 
base stations before it is either successfully handed off, or is 
forced to terminate as the signal strength falls below accept- 
able levels. An improperly designed handoff algorithm can 
result in an unacceptably high level of bouncing (resulting in 
high signaling costs) and/or a high probability of forced ter- 
mination. We argue that approaching the handoff problem in 
a stochastic control framework is most appropriate. We use 
a Markov decision process formulation, and derive optimal 
handoff strategies via Dynamic Programming (DP). 

Typically, in a cellular mobile communication network 
(analog or digital), each cell is assigned a separate set of chan- 
nels (frequencies, carriers, or time slots). The assigned set 
depends on the frequency planning strategy used for spatial 
reuse, and may be fixed or changed dynamically. A successful 
handoff entails not only the availability of a channel in the 
new cell (to which the mobile enters) but also an acceptable 
level of signal strength on the available channel. 

To focus mainly on the handoff issue, we take a simple 

*The work of these authors was supported partially through 
NSF Grant NSFD CDR-88-03012 and through NASA Grant 
N AGW277S. 

model of two adjacent cells with one channel per cell, and 
analyze the optimal handoff when a single mobile with an 
active call moves from one cell to the other. We assume that 
these channels are always available, distinct, and that their 
statistical characteristics are independent. Each channel is 
assumed to  provide a two-way link between the respective 
base and the mobile (and thus we do not distinguish between 
frequency or time division duplex link to achieve this two- 
way communication). We analyze mobile controlled handoff 
in the sense that the signal strength on each of these chan- 
nels is measured periodically at regular intervals at the mo- 
bile/portable. The signal strength so measured is subject 
to both path loss and shadow fading. Handoff decisions are 
made at these measurement instants. Multipath effects are 
ignored here as the correlation time is typically much smaller 
than the measurement interval for most cases of practical in- 
terest. Possible interference due to  other calls being on a 
co-channel (e.g., same frequency at another base) is also ig- 
nored. Nevertheless, the results derived here form a basis 
for analyzing enriched models that  include such interference, 
availability of multiple channels, and base station controlled 
or base-mobile negotiated handoffs. Our formulation includes 
modeling the movement of the mobile as well as the underly- 
ing randomness, induced by the (spatially correlated) fading 
environment, in the signal strengths as observed at  the mea- 
surement instants. 

An optimal handoff strategy should reflect the optimal 
tradeoff between the call quality (higher signal strength im- 
plies a higher call quality) and the signaling costs. If the 
handoffs could be accomplished without cost (no signaling 
costs), the best strategy, trivially, is for the mobile to con- 
nect to the base (channel) with higher signal strength at each 
instant. In the presence of non--791-0 signaling cost, the best 
handoff strategy should reflect the optimum intertemporal 
tradeoff (during the lifetime of the call) between the total 
signaling costs and the quality or signal strength achievable 
by the connection, instant to instant, relative to the alter- 
native connection present. Accordingly, for purposes of op- 
timization, we consider a cost function that entails a fixed 
signaling cost for each handoff, and a cost proportional to  
the power gain foregone when a switch to the higher power is 
not undertaken. We show that the optimal handoff strategy 
is characterized by a threshold policy, and that the threshold 
is defined over the signal strength difference observed on the 
channels. The specific cost function we use, while reflecting 
the necessary concerns, also simplifies the numerical compu- 
tations to obtain the threshold. However, the methodology 
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is applicable to  other definitions of cost. 
Much of the previous research on handoffs is based on sim- 

ulation studies, whereas the theoretical studies have focused 
on the evaluation of the expected number of handoffs for a 
given hysteresis strategy [3], [7]. This paper is one of the first 
attempts to  address handoffs in a control-theoretic frame- 
work. Another contribution in that vein can be found in a 
recent study by Asawa and Stark [l]; these authors consider 
an optimization problem similar to the one presented here, 
but propose only an approximation for solving it. 

The paper is organized as follows: In Section 11, we present 
a general Markov decision theoretic framework for address- 
ing the handoff issue. Section I11 introduces the model being 
used in this work to  characterize the stochastic behavior of 
the received powers. The stochastic control problem is in- 
troduced in Section IV, where the threshold structure of the 
optimal policy is presented. In Section V we introduce call 
quality and number of handoffs as two possible measures for 
assessing the effectiveness of different handoff schemes. Sec- 
tion VI contains several numerical results and comparison 
between different handoff schemes. For lack of space, proofs 
and technical details have been omitted; they can be found 

A few words on the notation used throughout: For any x in 
Et2, we write llzll for its Euclidean norm, and [X 1 Y ]  refers 
to  any random variable (rv) which is distributed according 
to the conditional distribution of X given Y .  We also write 
X - N ( p ,  R) t o  signify that the rv X is distributed according 
to a Gaussian distribution with mean vector ,LL and covariance 
matrix R. For any sequence of rv’s { ( t ,  t = 0 , 1 , .  . .}, we set 
Ft 5 ([0,(1, . . . , & )  for the history of the sequence up to time 
t = 0,1 , .  . .. 

in [511 [GI. 

I1 The Model 
We now introduce a Markov decision process formulation for 
the handoff problem faced by a mobile which receives signals 
from two distinct base stations, labeled base stations zero and 
one, while moving within a given geographical area. 

A. The Underlying Randomness 
We begin by describing the elements of the model which are 
unaffected by the mobile’s control actions. This includes ran- 
domness in signal propagation and fading as well as possible 
randomness in the mobile’s movements. The mobile moves 
through a region E of the plane R2, which we assume com- 
posed of a finite number of points in the plane. This is done 
in order to simplify the discussion, with the understanding 
that most of the developments herein applies to the case 
of more general regions. The mobile then travels through 
E according to a stochastic process {St,  t = 0 , 1 , .  . .} with 
St denoting the position in E of the mobile at the begin- 
ning of the time slot [t, t + 1). At time t ,  the strength of 
the received signal from base station i is denoted by P:, 
i = 0 , l ;  it is measured in dB relative to a fixed transmitter 
power. For notational convenience, we write Pt 5 (PF, P:) 
and Xt  s (Si, Pt). The joint evolution of position and power 
levels { X t ,  t = 0 ,  1,. . .} is modeled as a time-homogeneous 
Markov process with the following structure: First, we as- 
sume that the position process ( S t ,  t = 0 , 1 , .  . .} is by itself a 
time-homogeneous Markov process on E with one-step tran- 

sition probability matrix Q (Q(s;  s’)) such that 

P[St+i = st+i I X t  = z t ]  = Q(st; st+i). 

P[Pt+l I p 1 X t  = 2, St+l = &+I] 

(11.1) 

Next, we postulate 

= G(p I st,pt, st+i), p E IR2 (11.2) 

where G(. I st,pt, st+l) denotes the conditional probability 
distribution of Pt+l given that the mobile is in positions st 
and st+l at time t and t+l ,  respectively, and power strengths 
at time t were observed at  levels pt.  The assumption (11.2) 
attempts to model the dependence between measured power 
levels as rather short-term and short-range. Although not 
entirely accurate, (11.2) is nevertheless compatible with mod- 
eling assumptions used in previous works [3], [4], [7]; we shall 
return to this point in Section 111. 

Finally, upon combining (11.1) and (11.2), we see by a sim- 
ple conditioning argument that 

P[St+l = S t + l ,  Pt+l i p 1 X t  = z7 
= GbJ I st,pt> st+1)Q(st; St+l) (11.3) 

and the process { X t ,  t = O , l , .  ..} is indeed a time- 
homogeneous Markov process on E x IR2. 

The call initiated at time t = 0 will last a random num- 
ber T of time slots. We adopt the traditional assumption 
that the duration of a call is adequately modeled as an ex- 
ponential rv. In line with this standard assumption, in our 
discrete-time setup we assume that the rv T is geometrically 
distributed, say P [ T  = t + 11 = p(1 - p)’ for all t = 0,1, .  . . 
for some 0 < p < 1. Alternatively, we may interpret p as 
the hangup probability, so that the call can be terminated 
in every time slot with probability p ,  and this independently 
of the duration of the ongoing call. The call duration T is 
assumed independent of the sequence { X t ,  t = 0,1, .  . .}. 
B. The Controlled System 
Fix t = 0 ,1 , .  . .. At the beginning of the time slot [t, t + l ) ,  
the mobile is in location St, the power strengths from the 
base stations have been measured at levels P,“ and P:, and a 
decision needs to be taken so as to which base station to use 
for transmission during the time slot [t, t + 1). This action is 
selected on the basis of available information in a way that 
we now proceed to define: Let Ut denote the {O,l}-valued 
rv which encodes the decision taken at time t ,  i.e., if Ut = i, 
i = 0,1 ,  then base station i is being used during the time slot 
[t, t + 1). For reasons that will become apparent soon, we set 
It Ut-1, so that It denotes the base station to which the 
mobile is attached during the time interval [t - 1, t ) ;  we also 
define 10 as being arbitrary. 

The information available to the decision-maker is de- 
scribed by the rv’s {Hi ,  t = 0, l , .  . .} which are defined re- 
cursively by Ht+l = (Ht ,  Ut, Xt+l,  It+l) with HO = ( X O ,  IO).  
To determine the successive decisions on the basis of this 
information pattern, we introduce the following notion of 
a (control) policy: A policy 7r is a collection of mappings 
( ~ t ,  t = 0 , 1 , .  . .} where for each t = 0 ,1 , .  . ., xt maps the 
range of Ht into (0, l}, with the interpretation that the base 
station x t (h t )  is used during the time slot [t, t+ 1) if Ht = ht. 
The policy 7r is said to be a Markov stationary policy if 
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there exists a single mapping f : E x R2 x{O,1} -+ {0,1} 
such that 7rt(ht) = f ( x t , i t )  with xt determined through 
ht = (ht--1,ut--1,xt1it). The class of all control policies is 
denoted by P .  

Fix a pair ( x , i )  in E x R2 x{O, l},  and t = 0 , 1 , .  . .. For 
each policy 7r in P ,  we associate a probability measure pz, i  
such that p:,i[X~ = x, IO = 21 = 1, and 

Pz,i[St+l = st+l, Pt+l i P, It+l = it+l I H t ,  Ut] 
= b(it+l, Ut )G(p  I St,Pt, st+i)Q(St; st+i) 

where we have made use of the equality It+l = Ut, and of the 
requirement that the underlying randomness be governed by 
(11.3), and this independently of the policy in use. 

The model is fully specified if we further assume the rv T 
to be independent of the rv's { X t ,  Ut ,  t = 0, 1, . . .} under 
FJ:,~, and this for each policy 7r in P. Such specifications 
amount to casting this controlled system as a Markov decision 
process with "state" process { ( X t ,  It), t = 0 , 1 , .  . .}. We refer 
the reader to the monographs [2] for additional material on 
Markov decision processes. 

I11 Gaussian Power Distribution Models 
The conditional distribution G(. 1 s t , p t ,  st+l) appearing in 
(11.2) is the component of the model that is hardest to specify. 
We now present a model which we use in the remainder of this 
paper, both for the purpose of analysis as well as for carrying 
out numerical experiments. This model can be viewed as a 
dynamic version of a static model which has been widely used 
to capture shadowing effects [3], [4]: Let {W'(T),T E R2} 
denote a family of jointly Gaussian rv's with zero mean and 
variance a:, i = 0,1, and with correlation structure 

for constants p > 0 and a: > 0. The two families ( W o ( r ) ,  T E 
R2} and {W' (T ) ,T  E Et'} are assumed independent. 

Let bi denote the location of base station i ,  i = 0 , l .  In 
location s, the strength P i ( s )  of the signal produced by the 
base station i is then given by 

Pi(,) E Ai-B;log(lls-bil l)+Wi(s-b;),  s E R2.  (111.2) 

The constant Ai reflects the transmitter power and is a func- 
tion of transmission frequency and height of the antennas, 
while Bi, with typical values in the range of 30-40 dB, mod- 
els the path loss [4]. We find it convenient to  write 

s E R2, i = 0 , l .  pZ(s) E Ai - Bi log(lls - bill), (111.3) 

The model (111.1)-(111.2) is a spatial one which specifies the 
distribution of power levels solely as a function of position, 
and does not fit into the framework of Section 11. As we 
seek to develop a dynamic model which does fit and which 
is also compatible with that spatial model, we first consider 
the following line of reasoning: Assume that the shadowing 
effects are essentially static, i.e., do not vary much over the 
duration of a call, and are described by the static random 
fields {P ' (T ) ,T  E R2}, i = 0 , l  - these can be thought as 
being generated at the beginning of t imet  = 0. It then seems 
reasonable to argue that the power levels at time t are those 
given by these static random fields evaluated at the position 

occupied by the mobile at time t .  In other words, the power 
levels {P,", t = 0 ,1 , .  . .} can be obtained by '(composing" 
the static random fields {P(T),T E a'}, i = 0 , l  with the 
mobile's motion, namely 

Pi ? Pi(&) = pi(&)  + Wl,  t = 0 , 1 , .  . . (111.4) 

where we have set Wi Wi(St - bi). The ran- 
dom field { (P0(r ) ,  P'(T)) ,  T E R2}, or equivalently 
{(W0(r) ,  W'(T) ) ,T  E R2}, is assumed independent of the mo- 
bi le ,~ trajectory {St, t = 0, l , . .  .}. 

Simple calculations [5] show that the Markov property 
(11.2) does not hold under the foregoing assumptions. Unde- 
terred by this unfortunate state of affairs we take the position 
that temporal variations have short-term memory. This as- 
sumption, when coupled with additional calculations on the 
model (111.4), leads us to the following dynamic models [5]: 
We posit the power levels to  have the form (111.4) where for 
each t = 0 , 1 , .  . ., the rv's Wf+l and W;+l are conditionally 
independent given W1*t ,  St+'), and for i = 0 , 1 ,  the rv 
W,"+, is conditionally Gaussian given Wilt, St+') with 
the requirement that the conditional mean yi+l and variance 

For the 
sake of concreteness we carry out the discussion in the special 
case 

= Wiat, and rf+l = a? (1 - cy:) , (111.5) 

where 
at = exp(--P-lIISt - St+lII). (111.6) 

Under these assumptions, the rv's Pf+l, and P:+l are then 
conditionally independent given ( X t ,  &+I), and for i = 0,1, 
the rv P,"+l is conditionally Gaussian given ( X t ,  St+l), i.e., 

depend only on the variables Wl,  St and 

[p:+l 1 X t ,  st+l] - N(pi(St+l) + yi+11 r f + l )  

and the conditional distribution G(. 1 s t , p t ,  st+l) is therefore 
Gaussian. 

IV A Stochastic Optimization Problem 
In order to formulate the handoff problem as a stochastic 
optimization problem, we need to define a cost structure 
which quantifies the cost associated with operating the sys- 
tem under any policy in P :  First we select a cost-per-stage 
c : R2 x ( 0 , l )  x (0, l} -+ IR, and for every initial condition 
(2, i ) ,  we define the total cost function 

The problem of interest is then that of finding a policy 7r* in 
P such that 

J,* (2, i )  5 ~ ~ ( 2 ,  i ) ,  (2, i )  E E x R' x (0, 1) (1v.2) 

for every other policy T in P. Such a policy T * ,  when it exist:;, 
is called the optimal (handoff) policy. 

To settle on a reasonable cost-per-stage c, we argue as fol- 
lows: Each time the mobile unit chooses a new base station, 
a database in the switching center is updated to keep track 
of the mobile's location. Because frequent and unnecessary 



switches between base stations can be wasteful of system re- 
sources, the cost function must be chosen so as to create a 
trade off between the two possible decisions, namely switch- 
ing and not switching. One particular cost-per-stage func- 
tion with this property associates a cost C with switching 
from one base station to the other, and penalizes the action 
of not switching by a cost proportional to the difference in 
signal strength between the alternative base station and the 
current one. For example, if the mobile unit is connected to 
base 0 and the strength of the signal from the other base, 
namely base 1, is higher by p 1  -pol then we assign the cost 
p' - p o  for not switching to base station 1. The opportunity 
cost p' - p o  encourages the mobile unit to switch to the bet- 
ter base station, whereas the fixed switching cost C creates 
a trade off. The corresponding cost-per-stage function c is 
given by 

if i # u  
c(z, i ,  U )  = ( - ~ ) ~ ( p '  - p o )  if i = U ,  (IV.3) Y 2 = (s, ( P O , P ' ) )  

and is used in (IV.2) throughout the discussion. 
In [ 5 ] ,  [6] we have shown that the cost function (IV.l) is 

well defined and finite for every policy n, and that it can be 
written in alternate form 

1 m 

J,(zl i )  = EE,i [ z(l - ~ ) ~ c ( X t ,  It,  U t )  . (IV.4) 

Hence, the total cost problem (IV.l)-(IV.3) can be recast as 
an infinite horizon discounted cost problem with discount fac- 
tor 1 - p. The standard machinery of DP thus applies and 
leads to a simple characterization of the optimal policy. In 
the interest of brevity, we only present the main results, with 
details available in [5], [6]. 

First, we define the value function for the problem (IV.1)- 
(IV.3) by 

V(z, i) E infTiEF J,(z, i). (IV.5) 
Using the usual backward induction arguments, we can show 
under (III.5)-(111.6) that the value function p + V ( s , p ,  i )  is 
a function of the difference z E p 1  - po.  It then follows from 
the DP optimality equation that the optimal policy n* is a 
Markov stationary policy which depends on the power level 
vector p only  through the difference z in their components. 
In fact, it turns out that  the optimal policy n* can be further 
characterized as belonging to the following class of threshold 
policies: A handoff policy n is said to be a threshold policy 
with threshold functions ri : E + R, i = 0,1,  if it is a 
Markov stationary policy such that for every (s, z )  in E x R, 
n ( s ,  z ,  0) = 1 iff z 2 T O ( S )  and n ( s ,  z ,  1) = 0 iff z 5 r l ( s ) .  

Proposition IV.l T h e  opt imal  handoff policy n* i s  a 
threshold policy w i th  threshold func t ions  T: : E + R, i = 0 , l .  

V Average Quality of Call and Expected 
Number of Handoffs 

Once a handoff policy (be it optimal or not) has been selected, 
it is of interest to compute the expected value of the quality of 
the call and the expected number of handoffs that the mobile 
experiences while the optimal policy is in effect. These two 
quantities constitute good measures of the effectiveness of a 

handoff policy. Other criteria include the expected delay in 
handoff which has been studied by Vijayan and Holtzman [7]. 

Consider a policy n in P.  Its call quality function C, is 
defined as the expected cumulative strength of the signal re- 
ceived from the active base station under the policy n during 
the call session, namely 

c,(z, i) 3 E:,i ItPl + (1 - I t )Pj  , [::: I 
Lo 1 

while the expected number of handoffs under the policy T is 
given by 

T-1 

s,(x,i) EE,i 1[ut # It] 

for ( z , i )  E E x R2 x(0,l). By an argument similar to that 
leading to (IV.4), both C, and S, can be written as dis- 
counted cost functions. As argued in [ 5 ] ,  [6], for any Markov 
stationary policy n, hence for any threshold policy, we can 
interpret J,, C, and S, as fixed points of suitably defined 
contractions on an appropriate Banach space of functions. 
This fact can be exploited in the usual manner for numerical 
purposes. 

VI Numerical Results 
In this section, we apply the ideas presented earlier to  the 
scenario where a mobile travels in a two-dimensional region; 
the road divides into two different paths with 70% of the 
mobiles taking one path and the remaining 30% taking the 
other. 

The discussion is carried out for the special case (111.5)- 
(111.6) with the numerical values Ai = 0, Bi = 30, ci = 5dB, 
i = 0,1, p = 0.2, C = 6, /? = 200m; the two base stations are 
2Km apart. The mobile path and the optimal thresholds are 
shown in Fig. 1. The thresholds are lower for the points that 
are closer to base 1. 

X axis [ml 

Figure 1. Mobile path together with the optimum thresholds. 

Clearly, the solution of the optimization problem depends 
on the structure of the cost function, as well as on the choice 
of the various parameters that enter the cost function. One 
of the important parameters is the switching cost C. In what 
follows, we present two methods to select a reasonable value 
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Table 1. Values of 5,) C,, and S, for three handoff policies 
n 7r I J ,  I c, I s, II n Optimal I -19.01 I -442.80 1 0.28 

Sub-optimal I -18.58 I -443.60 I 0.34 
c-threshold I -17.49 1 -444.15 1 0.63 

for this parameter. Note that in the cost function presented 
in (IV.3), the switching cost is being compared with the im- 
provement in the signal strength in dB. We must, therefore, 
determine how expensive the switching action is relative to 
the potential improvement achieved by switching to  the bet- 
ter base station. Alternatively, the call quality can be com- 
puted for different values of C and based on the desired value 
of the average call quality, the appropriate switching cost can 
be obtained. In Fig. 2 we have displayed the call quality ver- 
sus switching cost. Because we have normalized by setting 
A, = 0, the constant A, must be added to the numerical val- 
ues for the average call quality in order to obtain the actual 
signal strength. As expected, call quality degrades with an 
increase in the switching cost because this increase makes the 
switching action more sluggish. 

J 
15 20 25 30 35 

-445 5 ‘  
10 

Switching cost 

Figure 2. Call quality degrades as the switching cost increases 
(A, has been set to  zero). 

Finally, we compare different aspects of three handoff 
strategies, namely, the optimal policy, the best fixed (sub- 
optimal) threshold policy, and a non-optimal threshold policy 
with thresholds equal to the value of 0. The results in Table 1 
show that the optimal strategy achieves a better call quality 
while making fewer switches, than the other two strategies. 
Even the suboptimal strategy shows an improvement over 
the non-optimal method in both call quality and expected 
number of switches. It is also worth emphasizing that the 
optimization scheme creates a balance between call quality 
and the number of switches; otherwise we could improve call 
quality by choosing a very small threshold which has the ef- 
fect of increasing the number of switches. 

VI1 Conclusions 
The problem of handoff in a cellular environment has been 
cast as a Markov decision problem. We exploited the well- 
developed machinery of DP t o  derive the structure of the op- 
timal handoff policy. This contrasts with most earlier stud- 
ies which focus only on analyzing the expected number of 

switches for a given threshold (hysteresis) policy. The op- 
timal policy is obtained by minimizing a cost function that 
creates a balance between two conflicting measures, i.e., num- 
ber of switches between cell sites and quality of the call. 

The optimal strategy is shown to  be of the threshold type, 
a fact which greatly facilitates its implementation. Through 
numerical computation we demonstrated that the optimal 
policy outperforms the conventional non-optimal handoff 
policy in both the number of switches between the cell sites 
and the quality of the call. This performance improvement is 
likely to be greater when fading variability and correlation are 
high. The proposed design methodology for handoff policies 
is also applicable for indoor wireless communication as well 
as for personal communication systems (PCS); in these situ- 
ations the size of the cells are much smaller (microcells and 
picocells) and the use of an effective handoff policy is even 
more crucial. The results are also useful in cell engineering. 

Several extensions of the model studied here will prove use- 
ful. The optimal handoff strategy depends on the mobility 
model. In practice, different mobiles/portables may have dif- 
ferent patterns of movement, thus requiring different mobil- 
ity models, whereas a common handoff strategy may be de- 
sired for all portables in the system. Additionally, it would 
be useful to extend the results of this paper to incorporate 
multiple channels per base stations, more than two bases, a 
detailed model of co-channel interference, and possible non- 
availability of channels. Multiple traffic classes with different 
objective functions and grades of service is another topic. For 
example, in Cellular Data Packet Delivery (CDPD) systems, 
data calls use channels when they are not in use by voice 
calls. Handoff schemes for data calls must reflect channel 
availability as well as required service quality (low bit error 
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