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The wave function 1s complex.

% 0 h* 0
lhgl[/(x,l‘) = —%yw(x,t)+ U(x)w(x,t)

What 1s the PDF for finding a particle at x ?

2

P(x,t) =y (x,1)
Step 1: solve Schrodinger equation for wave function

2

Step 2: probability of finding particle at x is  P(x,t) = |y (x,?)




Stationary States - Bohr Hypothesis

0 h 0’
ih— 9 v(x,t)= —%yw(x,t) +U(x)y(x,t)
w(x,1) = l/’}(x)e—lEt/h o= %

Stationary State satisfies

. n o’
Ey(x)= ——FW(X) +U ()Y (x)



Stationary states

. oo . .
Ey(x)= —%yvf@ +U(X)y (x)

Rewriting:

82
0 — W) =-F ()y(x)

Dependence on x comes from
dependence on potential

Br(x)= (E U(x))



az

o — Y (x)=-B ()P (x) Requirements on wave function

1. Wave function 1s continuous

lin (X)— (E U(x)) 2. Wave function is normalizable
Classically
(E-U(x))=K : \ w
’ P(x)dx = ’ [r(x)|2dx = 1

K= kinetic energy



) ‘qufectly rigid ends

0’ >
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2
B (x) = h’? (E-U(x))

2
ﬁ2<x>-h—’;'”‘<z<>

The potential energy becomes
infinitely large at this point.
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— V() =-f ()y(x)

=T (E-Uw)
2
B ="7(K)

1. Inside the box, ¢ 1s oscillating in
some way still to be determined.

Yatx = L) = 0.

P(x) % 2.4 = 0 outside the box.
ey “
.
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3. Continuity of ¢ requires

The potential energy becomes
infinitely large at this point.
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For O<x<L

Solution:

82

x 2 l//(X) — —ﬁ%ﬁ(x)

W (x) = Asin fx + Bcos Bx

Boundary Conditions: w(0)=0 w(L)=0

w(0)=0

W(L)=0

Must have

I/A/(O): Asin0O+ BcosO=B— B=0

w(L)=AsinBL=0  PL=nn

B, = ?(E)
h? n(nm\ . .
E=—/"= ( j Energy 1s Quantized
2m 2m\ L



A Particle in a Rigid Box

The solutions to the Schrodinger equation for a particle in a rigid
box are

fr,(x) = Asinf3,x = Asin

sssss
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For a particle in a box, these energies are the only values of £
for which there are physically meaningful solutions

to the Schrodinger equation. The particle’s energy 1s
quantized.



A Particle in a Rigid Box

The normalization condition, which we found 1in Chapter 40,
1S

’ [fr(x)|7dx =1

e v ¢

This condition determines the constants A4:

'2

“VL

The normalized wave function for the particle in quantum
state n 1s

n=1,223 ...

2  Inmx
_ — Sl ——
P, (x) = i\ E L
0 r<0and x> L

O=x=1L




FIGURE 41.7 Wave functions and probability densities for a particle in a rigid box of length L.

n=1 n=32 n=3

fr (x) ir,(x) iry(x)




EXAMPLE 41.2 Energy Levels

and Quantum jumps
QUESTIONS:

EXAMPLE 41.2 Energy levels and quantum jumps

A semiconductor device known as a quantum-well device 1s
designed to “trap” electrons in a 1.0-nm-wide region. Treat this as
a one-dimensional problem.

a. What are the energies of the first three quantum states?
b. What wavelengths of light can these electrons absorb?



EXAMPLE 41.2 Energy Levels
and Quantum jumps

MODEL Model an electron in a quantum-well device as a particle
confined in arigid box of length L = 1.0 nm.



EXAMPLE 41.2 Energy Levels
and Quantum jumps

VISUALIZE FIGURE 41.9 shows the first three energy levels and the
transitions by which an electron in the ground state can absorb a
photon.

FIGURE 41.9 Energy levels and quantum jumps
for an electron in a quantum-well device.
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EXAMPLE 41.2 Energy Levels
and Quantum jumps

SOLVE a. The particle’s mass is m = m, = 9.11 X 10 'kg. The
allowed energies, in both J and eV, are
h*

BE= - = 6.03 X 107°°] = 0377 eV
SmL

-—

E, = 4E, = 1.508 eV
E, = 9E, = 3.393 eV



EXAMPLE 41.2 Energy Levels
and Quantum jumps

b. An electron spends most of its time in the n = | ground state.
According to Bohr’s model of stationary states, the electron can
absorb a photon of light and undergo a transition, or quantum
jump, to n = 2 or n = 3 if the light has frequency f = AE/h.
The wavelengths, given by A = ¢/f = hc/AE, are

hc

Ay = 5 =0 = 1098 nm

A Lt A11
oy oy — — < nm
ki E3 =F 1




EXAMPLE 41.2 Energy Levels
and Quantum jumps

ASSESS In practice, various complications usually make the
| — 3 transition unobservable. But quantum-well devices do
indeed exhibit strong absorption and emission at the A; ., wave-
length. In this example, which is typical of quantum-well devices,
the wavelength is in the near-infrared portion of the spectrum.
Devices such as these are used to construct the semiconductor
lasers used in CD players and laser printers.



The Correspondence Principle

 Niels Bohr put forward the 1dea that the average behavior
of a quantum system should begin to look like the
classical solution in the limit that the quantum number
becomes very large—that 1s, as n — oo.

* Because the radius of the Bohr hydrogen atom is » = na,
the atom becomes a macroscopic object as n becomes
very large.

* Bohr’s 1dea, that the quantum world should blend
smoothly into the classical world for high quantum
numbers, 1s today known as the correspondence
principle.



The Correspondence Principle

FIGURE 41.12 The quantum and classical probability densities for a particle in a box.

On average, the quantum probability

> U and classical probability v ; lassical v
The quantum and classical probability density matches the classical value.

, densities are very different.
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As n gets even bigger and the number of oscillations
increases, the probability of finding the particle in an
interval Ax will be the same for both the quantum and the
classical particles as long as A x 1s large enough to include
several oscillations of the wave function. This 1s in
agreement with Bohr’s correspondence principle.




FIGURE 41.13 A finite potential well of 0
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FIGURE 41.14 Energy levels and wave functions for a finite potential well. For comparison,
the energies and wave functions are shown for a rigid box of equal width.

(a) Finite potential well (b) Particle in a rigid box
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Finite Potential Wells

The quantum-mechanical solution for a particle in a finite
potential well has some important properties:

e The particle’s energy 1s quantized.

* There are only a finite number of bound states. There
are no stationary states with £ > U, because such a
particle would not remain in the well.

* The wave functions are qualitatively similar to those
of a particle 1n a rigid box, but the energies are
somewhat lower.

* The wave functions extend into the classically
forbidden regions. (tunneling)



Finite Potential Wells

The wave function 1n the classically forbidden region of a
finite potential well 1s

(X1

Y(X) = Pogue forx = L

The wave function oscillates until it reaches the classical
turning point at x = L, then it decays exponentially
within the classically forbidden region. A similar analysis
can be done for x <0.

We can define a parameter defined as the distance into the
classically forbidden region at which the wave function has
decreased to ¢! or 0.37 times its value at the edge:

h
\V2m(U, — E)

penetration distance 1 =



FIGURE 41.13 A finite potential well of 0
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The Quantum Harmonic
The potential-energy Ql&gﬂlgtlg&onic oscillator, as

you learned in Chapter 10, 1s

L. 5
U(x) = 5/\’.\'*
where we’ll assume the equilibrium position 1s x, = 0.
The Schrodinger equation for a quantum harmonic
oscillator 1s then

d>s 2m L,
— = ——|E — =kx? ()
dx- h” -




FIGURE 41.20 The potential energy of a
harmonic oscillator.
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The Quantum Harmonic Oscillator

The wave functions of the first three states are
Py (x) = Aje ™

X 2
Pr(x) = Ay—e ™ /2b
b

27| _ 2b
l.jlﬂ(-\.) = A;; ] — T B SR
b=

Where w = (k/m)"? is the classical angular frequency, and n
1s the quantum number



FIGURE 41.21 The first three energy levels and wave functions of a quantum harmonic

oscillator.
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FIGURE 41.30 A quantum particle can
penetrate through the energy barrier.
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The particle emerges

with the same de Broglie
wavelength after tunneling
through the energy barrier.




Quantum-Mechanical
Tunneling

Once the penetration distance FIGURE 41.31 Tunneling through an ideal-
. . ized energy barrier.
N 1s calculated using

1 2 U(x) The barrier
m Energy h 1s width w.
> (U E) 7 bnnel
eqe . W(x)=Ae ™
probability that a particle [\ /\ N )
g o . lit |L 4
striking the barrier from the . P \.
. . - W \/ \/ N
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. f d t b — Tunneling
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A |?
= = —win\2 — —2w/
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THE END |

Good Luck on the remaining exams



