Chapter 37. Relativity

1. Newton’s laws and Maxwell’s equations describe the motion
of charged particles and the propagation of electromagnetic
waves under circumstances where the Quantum effects we
discussed last week can be 1gnored.

2. There are some inconsistencies when the speed of motion of
objects or observers approaches the speed of light.

3. These inconsistencies are resolved by Einstein’s Special
Theory of relativity
The General theory describes gravitation and accelerating
observers.
The Special theory addresses modifications of Newton’s Laws
and relations between measurements made by different
observers



Classical Physics

Maxwell’s Equations Newton’s Laws
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Special Relativity: Two components

1. How are the laws of physics modified when objects move
close to the speed of light?

2. What do observers who are moving relative to each other
measure when something happens? How are the
measurements related?

You will be surprised to learn that very little changes in terms of
the mathematical statement of the laws of physics.

You will be puzzled by the counterintuitive relations between
measurements made by moving observers. Most of the
conceptual difficulty is here.



Maxwell’s Equations describe the excitation of
electromagnetic fields by moving charges.

It charges’ positions and velocities are known ME:s tell us what
are the electromagnetic fields, including the generation and
propagation of light waves.

o How many, and which ones
$B-dA =0 need to be modified?
§E-dh =%
&, 1. All
o J o 2. Some - first two
CJSZOOPE-d =—— J B-dA 3. Some - second two
at Surface 4. None
5. None of the above
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Newton’s Laws with the Lorenz force tells us how charged particles
move in electromagnetic fields.

Newton’s Laws How many, and which ones
need to be modified?
d .

#1 Epi—Q(E-l-ViXB) 1Al
2. #1

#2 p; = mv, 3. #2
4. #3

#3 ig -V 5. None

e ' 6. None of the above



Reference Frames: Two observers moving relative to each other
measure different values for some quantities.

v 4 v A Reference frame S’ 1s
moving at velocity v in the

>y x direction with respect to
Reference frame S.

X X
Reference frame S 1s
Observer Observer . : :
stationary stationary moving at Yelom?y -V 1n
in S inS’ the x direction with
respect to Reference frame
S’.

Inertial frames: reference frames moving at constant velocities with
respect to each other, and in which the laws of physics apply.



Reference Frames: Two observers moving relative to each other
measure different values for positions over time.

A light tlashes Coordinates and conventions.
A > A
’ ﬁ:/ d 1. For simplicity, align axes of
V > v reference frames so that
relative motion of the frames
@ g @ R is. in one coordinate’s
X X’ direction, say - X.

Observer e 2. Pick .the. origin.of both systems

: . to coincide at time t=0.
stationary stationary
in S ins’

X = X — Vvt
Question: A light flashes. Observer
S say’s it flashed at time t, at the
point X, y, Z. When and where does 7=z
Observer S’ say it flashed. Assume /
you know nothing about relativity. L=

/
y =Yy " An object moving with
x=vt in S appears
stationary in S’



Galilean Transformation

x' =x—vt Only difference is in coordinate in which

;. motion occurs.
y =Yy

7=z -
t' =t

Both observers measure the same time.

Inverse transformation (v becomes -v)

x:x’—l—vt’
!
y=Yy
/
=2

r=t'



Galilean Transformation addition of velocities

x'=x—vt
/_
y =Yy
7=z
t' =1

Other components of  u
velocity unchanged

In frame S particle is observed to
move from point X, y,, Z,, at time t,
to point x,, y,, Z, at time t,

Component of velocity in x direction
X, 7 X
L, —1

u —=

X

Velocity observed in frame S’

/ /

Xy X

u, = / /

tz_tl

y (x, —vt,)—(x, —vt,)
’ t2_t1

l/t/ _ (X2 _x1)_V(t2 _t1)
’ tz_tl

U, =u, —v



For Galilean Transformations - Acceleration is invariant
Suppose the velocity measured in frame S is u(t).
The velocity measured in S’ 1s u’ (tH)=u(t) -v

What 1s acceleration in each frame?

(=L@ = —(u(r) V)= —u(t) &)

a'(thy=a(@)

—

So,assuming m'=m andif B —F

—

ma =F ma=F

Newton’s law has the same from in both frames



Suppose the force were given by Coulomb’s law.
Would that have the same values in all frames?

~ ~ . Kqg.
F=gh(f) EBH=Y %

J

Charges making force: qy,
J,, g3, €tC.

e —
e -
————— -



'gsseam\
S

Observer S says:

Observer S’ says:

How can both be right?



Option A: There is a preferred reference frame (for example S).
The laws only apply in the preferred frame. But, which frame?

Option B: No frame 1s preferred. The Laws apply in all frames.
The electric and magnetic fields have different values for different
observers.

Field
Transformations

Fields measured in frame S
to be E and B are found in
frame S’ to be

E'=E+VXB S

-~ 1

B =B—-—VXE

5

(

Extended Option B: No frame 1s preferred. The Laws apply in all
frames. All observers agree that light travels with speed ¢. Einstein’s

postulates —Special Relativity



Which of these is in an inertial
reference frame (or a very
g00od approximation)?

A. A rocket being launched

B. A car rolling down a steep hill

C. A sky diver falling at terminal speed

D. A roller coaster going over the top of a hill
E. None of the above



Ocean waves are approaching the beach
at 10 m/s. A boat heading out to sea
travels at 6 m/s. How fast are the waves
moving in the boat’s reference frame?

A. 4m/s
B. 6 m/s
C.16 m/s
D.10 m/s



Maxwell’s Equations seem to imply that there 1s a preferred
reference frame

If Galilean transformations apply a
spherical wave spreads at from a
moving point.

Spherjcal wave front
A light flashes

Moves at
speed c+v

Question: A light flashes. Observer

S say’s a spherical wave propagates .
away from the point of the flash. Same as propagation of

What does Observer S’ say? waves 1in a medium - The
ether. All attempts to
measure the ether failed.




Using the interferometer
Michelson and Morley showed
that the speed of light 1s
independent of the motion of
the earth.

This implies that light is not
supported by a medium, but
propagates in vacuum.

Led to development of the
special theory of relativity.

Albert Michelson
First US Nobel Science Prize Winner

Wikimedia Commons



What is seen

Michelson Interferometer
1. The wave i1s

Mirror M, divided at
this point.

|
| .
| O
N < Mirror M,
L -
Source
Beam
splitter

* L, Adjustment
; SCrew

3. The detector measures 2. The returning As L2 is varied. central sbot
the superposition of the waves recombine ? p

two waves that have at this point. changes from dark to light,
e SO CTEiTALS: etc. Count changes = Am

_ AL,
A2

IfIvaryL, Am



Measuring Index of refraction

1. The wave is . .
Mirror M, Relative motion of ether, v, west to

Travel time on leg 2

. __L L, 2L,

2_c—l—ve c—v _c(l—vf/cz)

e

Travel time on leg 1

L
t, = L

: eyl =v2/c?
: ; 5 SCrew

3. The detector measures 2. The returning
the superposition of the waves recombine
two waves that have at this point.
traveled different paths.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Turn adjustment screw until
constructive interference occurs. Then
rotate whole experiment so that Leg 1
1s now east to west. Interference
should change if ether is present. It
doesn’t. Speed of light is the same
north-south as east-west.



Einstein’s Postulates

1. All the laws of physics are the same 1n all inertial reference frames

That the laws are the same does not mean that the values of
the measured quantities will be the same. The rules are the
same.

2. The speed of light 1s the same for all observers
There 1s no ether.
These postulates require that we replace Galilean

transformations with something else - Lorentz
transformations.



Einstein’s Principle of
Relativity

Principle of relativity All the laws of physics are the same in all inertial refer-
ence frames.

« Maxwell’s equations are true in all inertial reference
frames.
« Maxwell’s equations predict that electromagnetic
waves, including light, travel at speed ¢ = 3.00 x 108
m/s.
* Therefore, light travels at speed c in all inertial
reference frames.
Every experiment has found that light travels at 3.00 x 10°
m/s 1n every inertial reference frame, regardless of how the
reference frames are moving with respect to each other.



FIGURE 37.9 Light travels at speed c in all
inertial reference frames, regardless of
how the reference frames are moving
with respect to the light source.

This light wave leaves Amy at
speed ¢ relative to Amy. It approaches
Cathy at speed ¢ relative to Cathy.

Bill

This light wave leaves Bill at
speed c relative to Bill. It approaches
Cathy at speed ¢ relative to Cathy.



Events

In order to describe the way coordinates and time in one frame are related to
coordinates in time in another we need to start thinking in terms of events.

An event is something that happens at a particular point in space and at a
particular time.

An event has spacetime coordinates (x, y, z, )
in frame S and different spacetime coordinates
(x', v 2. in ttame S°.

y oy An event has four coordinates
3 space + time.
V T The time represents the actual time the
event occurred, not the time the
information about the event arrived at

S“ x! some detector. We assume we can
design detectors that can determine the

.
@ X actual time..
Copyright © 2008 Pearson Education, Inc.,, publishing as Pearson Addison-Wesley.




A carpenter is working on a house two
blocks away. You notice a slight delay
between seeing the carpenter’s
hammer hit the nail and hearing the
blow. At what time does the event
“hammer hits nail” occur?

A. Very slightly after you see the hammer hit.
B. Very slightly after you hear the hammer hit.
C. Very slightly before you see the hammer hit.
D. At the instant you hear the blow.

E. At the instant you see the hammer hit.



Lack of simultaneity

Two lights flash at the same time - t=2s.

Two lights flash Light #1 is at the point (x=2m, y=0, z=0).
Y 4  at the same time Light #2 is at the point (x=4m, y=0, z=0).
/ What are the space-time coordinates of event #17?
{§)—3——2¢ | |
X What are the space-time coordinates of event #27?

Suppose light is detected at the origin.
When does it arrive?

Does this change your answer for the space time coordinates?



Two lights flash

Y 4 at the same time 4 Apply a Galilean transformation
v=5m/s to finc.l the space time |
> coordinates of the two events in
the frame S’ )
\ . > X =x—vt
@ 3.5 253 @ > /
X y =y
/
7=z
In S: InS’: =1
Event #1 Event #2 Event #1
_ x, =4 Event #2
X =2 . X =2-8.2=-8
_ z, =0 /
g = 0 tz 2 le =0 Yy = 0
_ — /
t = 2 2 tll =2 7, =0
/
t, =2

Note: spatial distance between events is the same in
both frames and time events occur is the same in both
frames. Neither of these will be true when we consider

Lorenz transformations.



A light flashes

The biggest conceptual
difficulty 1s that two things
that happen at the same time in
one frame, happen at different
times in another frame.

Lorentz transformations of

space and time are such that
all observers see a spherical
wave front propagating at c.

A light flashes




Galilean Lorentz
- —
x/:x—vt x/—’y(x vt)
. ;I y =Yy
Transformation y =y /
7=z -
P t’:'y(t—vx/cz)
’y:l/\/l—(v/c)z
x=x+vt x=7<x’+vt')
Inverse Y=y y=y
7=17 7=71

t= fy<t’—|—vx’/cz)

’y:l/\/l—(v/c)z



Comments

Two events occurring at the same time in S, but
separated in space will appear to be further
y =Yy separated in S’- (space contraction)

= 7<t —vx/ 02) «— Two event.s occurring at the same time in S, but
separated in space will not occur at the same
time S’

fy:l/\/l—(v/c)z >1

Time dilation and length contraction.

Time for moving objects appears to slow down for a stationary
observer.

Length of a moving object appears to contact for a stationary
observer.



Time Dilation A moving light flashes at
regular intervals T’ in its own
frame S’ (rest frame). It’s a

y A y’ 4 clock.
3t >y ¥ =0
Event #1 - first flash 0
[, =
X x’ ,
x, =0
S S’ Event #2 - second flash g
=

Calculate the coordinates of the two flashes in S.

Which Transformation should I use?



Galilean Lorentz
- —
x/:x—vt x/—’y(x vt)
. ;I y =Yy
Transformation y =y /
7=z -
P t’:'y(t—vx/cz)
’y:l/\/l—(v/c)z
x=x+vt x=7<x’+vt')
Inverse Y=y y=y
7=17 7=71

t= fy<t’—|—vx’/cz)

’y:l/\/l—(v/c)z



Time Dilation A moving light flashes at
regular intervals T’ in its own
frame S’ (rest frame). It’s a

y A y’ 4 clock.

x; =0
3t > v Event #1 - first flash
t,=0
) > S} > .

<SJ X </ X’ Event #2 - second flash %2 =0
=T’
2

S Q’

Calculate the coordinates of the two flashes in S.

Event #1 Event #2 In S period between flashes is
- first flash - second flash
/ /
YT >T
=) =0 m=a(d )=
f = V(Z{ !/ C2> —0 t, = 7(% + vx! /C2> = ~T' Clock appears to run slow

y=1/{1—(v/cy



Proper Time

The time between two events that occur at the same point in
space is called the proper time. Label proper time AT

In some other reference frame these events will occur at
different points in space. They will be separated in time by a

time interval At.

v=1/J1—(v/cy

v=1/1-73
B=v/c

At = ~yAT

AT = At/ y=41—- At



Space Contraction A bar of length L’ in its own
frame (S’) 1s moving with

’ I velocity v relative to an
>y observer in frame S. What
length does the bar have in S?
> S’ >
X x’
S’

We need two events.
What two events should we pick?



Two tlashing lights, one on each end of the bar.

A} When should they flash?
or
\ / Camera takes snap shot as
“" bar goes by.
Same path length

from ends to camera



The two events should occur at the same time in S.
Gives the length of the object in S.

In S In S’
x, =0 I __ _
Event #1 - left flash tl— X = 7(’“1 _th) =0
b tfzy(tl—vxl/&):O
. x, =L
Event #2 - right flash 12—() xézfy(xz—vtz):vL
=
t, = 7(1‘2 — VX, /cz) = 7(—VL/02)
Length in S’ L'=~L . _
'L Bar is shorter in S

In S’ the bar is stationary, so the fact that the two events occur at different times in
S’ is not important.



Length Contraction
The distance L' between two objects, or two points on one

object, measured in the reference frame in which the objects

are at rest is called the proper length. The distance L in a
reference frame S 1s

L=L"/yv=J1-3L B=v/c
L'>L

NOTE: Length contraction does not tell us how an object
would /ook. The visual appearance of an object 1s
determined by light waves that arrive simultaneously at the
eye. Length and length contraction are concerned only with
the actual length of the object at one instant of time.



A tree and a pole are 3000 m apart. Each is
suddenly hit by a bolt of lightning. Mark, who is
standing at rest midway between the two, sees
the two lightning bolts at the same instant of
time. Nancy is at rest under the tree. Define
event 1 to be “lightning strikes tree” and event 2
to be “lightning strikes pole.” For Nancy, does
event 1 occur before, after or at the same time as
event 2?

A. before event 2
B. after event 2
C. at the same time as event 2



A tree and a pole are 3000 m apart. Each is
suddenly hit by a bolt of lightning. Mark, who is
standing at rest midway between the two, sees the
two lightning bolts at the same instant of time.
Rachel is flying Nancy’s rocket at v = (0.5¢ in the
direction from the tree toward the pole. The
lightning hits the tree just as she passes by it. Define
event 1 to be “lightning strikes tree” and event 2 to
be “lightning strikes pole.” For Rachel, does event 1
occur before, after or at the same time as event 2?

A. before event 2
B. after event 2
C. at the same time as event 2



Mark S:

Rachel S’:

x' = V(x—vt)
t = v(t—vx/c2>

Event #1: Event #2:

Tree Pole
x, =0 x, = L =3000m
t, = t,=0
xi =v(x,—vt,)=0 x, = y(x, —vty) = (L)

!

t1:7<t1—vx1/c2)20 tQZW(tz_sz/Cz)
=fy<—vL/cz)<t1’

Event 2 occurs before Event 1 in S’



EXAMPLE 37.5 From the sun to

Saturn
QUESTIONS:

EXAMPLE 37.5 From the sun to Saturn

Saturn is 1.43 X 10" m from the sun. A rocket travels along a line
from the sun to Saturn at a constant speed of 0.9¢ relative to the
solar system. How long does the journey take as measured by an
experimenter on earth? As measured by an astronaut on the rocket?



EXAMPLE 37.5 From the sun to
Saturn

MODEL Let the solar system be in reference frame S and the
rocket be in reference frame S’ that travels with velocity v = 0.9¢
relative to S. Relativity problems must be stated in terms of
events. Let event 1 be “the rocket and the sun coincide™ (the
experimenter on earth says that the rocket passes the sun; the
astronaut on the rocket says that the sun passes the rocket) and
event 2 be “‘the rocket and Saturn coincide.”



EXAMPLE 37.5 From the sun to
Saturn

VISUALIZE FIGURE 37.22 shows the two events as seen from the two
reference frames. Notice that the two events occur at the same
position in S’, the position of the rocket, and consequently can be
measured by one clock.



EXAMPLE 37.5 From the sun to

Catinrn
FIGURE 37.22 Pictorial representation of the trip as seen in
frames S and S'.

Rocket journey in frame S Rocket journey in frame S’
[
Y Event 1 y Event |
—V —V
A
~

X - x'
The time between The time between these two
these two events is Af. events is the proper time A7.




EXAMPLE 37.5 From the sun to
Saturn

SOLVE The time interval measured in the solar system reference
frame, which includes the earth, 1s simply

Ax .43 X 10%” m
At = = = 5300 s

v 0.9 X (3.00 X 10° m/s)
Relativity hasn’t abandoned the basic definition v = Ax/Ar,
although we do have to be sure that Ax and Ar are measured in just
one reference frame and refer to the same two events.




EXAMPLE 37.5 From the sun to
Saturn

How are things in the rocket’s reference frame? The two events
occur at the same position in S and can be measured by one
clock, the clock at the origin. Thus the time measured by the astro-
nauts is the proper time At between the two events. We can use
Equation 37.9 with § = 0.9 to find

At =V1 — B2Ar = V1 — 0.9%(5300s) = 2310 s




EXAMPLE 37.5 From the sun to
Saturn

ASSESS The time interval measured between these two events by
the astronauts is less than half the time interval measured by
experimenters on earth. The difference has nothing to do with
when earthbound astronomers see the rocket pass the sun and Sat-
urn. Az is the time interval from when the rocket actually passes
the sun, as measured by a clock at the sun, until it actually passes
Saturn, as measured by a synchronized clock at Saturn. The inter-
val between seeing the events from earth, which would have to
allow for light travel times, would be something other than 5300 s.
At and AT are different because time is different in two reference
frames moving relative to each other.



Space-Time Invariant

Consider two events which are separated in space and time

_ i Ax [ Ax = y(Ax —vAt)
Sep aration J Ay Separation Ay’ = Ay
in S Az nsS’ s A7 = Az
NAY; . At’:’y<At—vAx/cz>

You can show
A — (AX® + Ay + A7)

— C2At/2 _(Ax/2 _|_ Ay/Z _|_ AZI2)
Space time interval 1s the same for all observers

Consequence: We know it is possible for two events to occur in different order depending
the reference frame in which they are viewed



Space time interval 1s the same for all observers

s =AY — (Ax* + Ay + A7)

Consequences: We know it is possible for two events to occur in a different order and at
different places depending the reference frame in which they are viewed.

But:
If s2>0 then
There is a reference frame where the two events occur at the same place.
The two events will always occur at different times.
The order of the events will be the same in all frames.
It is possible that the first event caused the second.

If s2<0 then
There is a reference frame where the two events occur at the same time.
The two events can not occur at the same place.
Neither event could have caused the other.



Relativistic transformation of velocity

y 4 u y’ 4 . .
/ Ball has velocity u in S, what
> v 1s velocity uw’ in S’
a D
{SJ g « <S/ " o dx'  ~y(dx—vdt)

Cdt Ay(dr—vdx/c)
,_(dx/dt—v) u,—v

Coordinates of ball

r_ v dx L
rY = 2
7=z c” dt c
t/:*y(t—vx/cz>
U —v
With time each changes * | Vi
-
dx' = ~v(dx — vdt
X ’)/( X — Vi ) / uy
dy' = dy U, = VU
d7' = dz v — sz)

di' = ~y(dt —vdx | ¢*)



Relativistic transformation of velocity

Special cases
W =V U ,v<<c
I—wvu,/c 1. Nonrelativistic motion, ,
/ u, recover Galilean Transformation U, = U, —V
u —
y 2
l1—vu_ /c /
¥( <€) ' =u,
! uz I __
Y(1—vu, /c?) U, =4,
u. =c
2.  Speed of light B
Yy
u, =
/ c—V
U, — =

Can you show that if u; + u§ +ul=¢’

Then 12 12 12 2
u- +u +u- =c

Z



EXAMPLE 37.10 A really fast
bullet

QUESTION:

EXAMPLE 37.10 A really fast bullet

A rocket flies past the earth at 0.90c. As it goes by, the rocket fires
a bullet in the forward direction at 0.95¢ with respect to the rocket.
What is the bullet’s speed with respect to the earth?



EXAMPLE 37.10 A really fast
bullet

MODEL The rocket and the earth are inertial reference frames. Let
the earth be frame S and the rocket be frame S’. The velocity of
frame S’ relative to frame S is v = 0.90c. The bullet’s velocity in
frame S"is u” = 0.95c¢.

transformation
/ l/tx —V
e = vu
y A u ya A 1_ 2x
/ c
> v inverse
® RS, - u +v
X X u = 7




EXAMPLE 37.10 A really fast
bullet

SOLVE We can use the Lorentz velocity transformation to find

u' + v 0.95¢ + 0.90c¢
=

— _ = — 0.997¢
L+ u'vic2 1+ (0.95¢)(0.90¢)/c> {

NOTE » Many relativistic calculations are much easier when
velocities are specified as a fraction of c. <



EXAMPLE 37.10 A really fast
bullet

ASSESS In Newtonian mechanics, the Galilean transformation of
velocity would give u = 1.85¢. Now, despite the very high speed
of the rocket and of the bullet with respect to the rocket, the bul-
let’s speed with respect to the earth remains less than c. This is yet
more evidence that objects cannot exceed the speed of light.



Relativistic Momentum

The momentum of a particle moving at speed u 1s
p = y,mu
]
Yo =/ _
V1 — u?/c?
where the subscript p indicates that this is y for a particle,

not for a reference frame.
o [f u << ¢, the momentum approaches the Newtonian value

of p = mu. As u approaches c, however, p approaches
infinity.

* For this reason, a force cannot accelerate a particle to a
speed higher than ¢, because the particle’s momentum
becomes infinitely large as the speed approaches c.




Where did this definition come from?

oL d
Old definition p,=mu, = md—j

Replace dt by dt’, time interval in frame in which particle is

instantaneously at rest.

dt’' = fyp(dt—uxdx/cz) =dt/~,

fypzl/\/l—uzx/cz

R
Ps dtr’ T dt



Suppose I know momentum, what 1s velocity?

p=myu 5,=1/J1-u/c’

Square p2 — mzvzpuz

Then solve for
ﬁ B ( p/ mc)2

2

% _1+(p/mc)2

Solve for

v, =1N1—u? /¢ =1+ (p/mey

P

my,

u= u'|<c

Always



The relativistic momentum
approaches %« as u — c.

g — —
' p — m’Ypu
| 4.’/’
|
|
| —1/N1—u />
| \Newtoman T
: momentum
h T f u
% U350 C

“The Newtonian momentum
expression 1s valid when u << c.

(b)
u
. , _—Newtonian
. P velocity
uUu—=——
n-y » — T """ ff s === -
The speed of a
Y, = \/ 1+ (p/mc) particle cannot
exceed c.
L0 p



EXAMPLE 37.11 Momentum of

a subatomic particle
QUESTION:

EXAMPLE 37.11 Momentum of a subatomic particle
Electrons 1n a particle accelerator reach a speed of 0.999¢ relative
to the laboratory. One collision of an electron with a target pro-
duces a muon that moves forward with a speed of 0.95¢ relative to
the laboratory. The muon mass is 1.90 X 107" ke. What is the
muon’s momentum in the laboratory frame and in the frame of the
electron beam?



EXAMPLE 37.11 Momentum of
a subatomic particle

MODEL Let the laboratory be reference frame S. The reference
frame S’ of the electron beam (i.e., a reference frame in which the
electrons are at rest) moves in the direction of the electrons at
v = 0.999¢. The muon velocity in frame S is u = 0.95c¢.



EXAMPLE 37.11 Momentum of
a subatomic particle

SOLVE v, for the muon in the laboratory reference frame is

1 1
= = 3.20

"}f pu—
V1 = u¥r VI = 0,952

Thus the muon’s momentum in the laboratory is

p = ypmu = (3.20)(1.90 X 10" kg)(0.95 X 3.00 X 10% m/s)
= 1.73 X 10" P kgm/s

The momentum is a factor of 3.2 larger than the Newtonian
momentum m. To find the momentum in the electron-beam refer-
ence frame, we must first use the velocity transformation equation
to find the muon’s velocity in frame S":

u— v 0.95¢ — 0.999¢

u' = =~ = =~ = —0.962c
I — uv/c” I — (0.95¢)(0.999¢)/c~




EXAMPLE 37.11 Momentum of
a subatomic particle

In the laboratory frame, the faster electrons are overtaking the
slower muon. Hence the muon’s velocity in the electron-beam
frame is negative. y, for the muon in frame S” is

1 l
: = 3.66

’y - 2 g - g
N1 = w1 - 0.9622

The muon’s momentum 1n the electron-beam reference frame 1s

p =y mu’
= (3.66)(1.90 X 107" kg)(—0.962 X 3.00 X 10° m/s)
= —2.01 X 10" kgm/s



EXAMPLE 37.11 Momentum of
a subatomic particle

ASSESS From the laboratory perspective, the muon moves only
slightly slower than the electron beam. But it turns out that the
muon moves faster with respect to the electrons, although in the
opposite direction, than it does with respect to the laboratory.



Relativistic Energy

The total energy E of a particle 1s
E = ypmcz = Ek, + K = rest energy + Kinetic energy
This total energy consists of a rest energy

,
Eﬂ — mc-

and a relativistic expression for the kinetic energy

K - (F}"p o I)HICE - (F}"p o I)E{}

This expression for the kinetic energy is very nearly mu?/2
when u <<c.



Where does this definition of energy come from?

d 2 2 d 2
—~ mc- =mc- —A1+(p/mec) =
dt Tr dt\/ (p )

p dp
m\/l +(p/mc)* dt

Thus,

work 1s done

Replaces kinetic energy



Energy of photons and particles now given by the same formula

For photons: E=hf p=h/X —> E=pc

For particles:  E =, mc* = me*\[1+ (p/ me)* = cJ(me)* + (p)’

Let m— 0 E — pc



EXAMPLE 37.12 Kinetic energy
and total energy

EXAMPLE 37.12 Kinetic energy and total energy
Calculate the rest energy and the Kinetic energy of (a) a 100 g ball
moving with a speed of 100 m/s and (b) an electron with a speed

of 0.999¢.



EXAMPLE 37.12 Kinetic energy
and total energy

MODEL The ball, with u << ¢, 1s a classical particle. We don’t
need to use the relativistic expression for its kinetic energy. The
electron is highly relativistic.



EXAMPLE 37.12 Kinetic energy
and total energy

SOLVE a. For the ball, with m = 0.10 kg,

E, = mc? = 9.0 x 10"]

L
KZEmu = 50017

b. For the electron, we start by calculating

1
Y — (1 — w2lcH)? =224

Then, using m, = 9.11 X 107" kg, we find
Ey=mc*= 82X 107""]
K= (y,— DE; =170 X 107"*]J



EXAMPLE 37.12 Kinetic energy
and total energy

ASSESS The ball’s kinetic energy 1s a typical kinetic energy. Its
rest energy, by contrast, 1s a staggeringly large number. For a rela-

tivistic electron, on the other hand, the kinetic energy is more
important than the rest energy.



Mass Energy Equivalence

Isolated box of mass M and length L in space.

A light on the wall on one side sends out a photon <
of energy E toward the right. photon
The photon has momentum p=FE/c. iy —»>
The box recoils with velocity v=p/M to the left. :’_
The photon is absorbed on the other side after a
time T=L/c.
The box absorbs the momentum and stops moving.
o AX
Displacement of the box EL
Ax =vT = Vv
C A
{V:ZD
Has the center of mass moved?
We would like to say no.

The box shouldn’t be able to move its center of mass.

We can say that the CM hasn’t moved if the photon reduced the mass
of the left side by m=E/c? and increased the right side by the same
amount.



Conservation of Energy

The creation and annihilation of particles with mass,
processes strictly forbidden in Newtonian mechanics, are
vivid proof that neither mass nor the Newtonian definition
of energy 1s conserved. Even so, the fotal energy—the
kinetic energy and the energy equivalent of mass—remains
a conserved quantity.

Law of conservation of total energy The energy £ = X E; of an isolated sys-
tem is conserved, where E; = (y,),m «c” is the total energy of particle i.

Mass and energy are not the same thing, but they are
equivalent in the sense that mass can be transformed into
energy and energy can be transformed into mass as long as
the total energy is conserved.



FIGURE 37.41 In nuclear fission, the

energy equivalent of lost mass is
converted into kinetic energy.
The mass of the reactants is 0.185 u

more than the mass of the products.
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Fission Fusion

9

)
9

Small nuclei stick together
to make a bigger one and
release energy

® Fusion powers all the stars, including the Sun.

® The fuel is hydrogen, but it has to be heated to millions of degrees to ignite the burn

® Power plants based on fusion could supply all our electrical needs. They could also
be used to generate hydrogen for fuel cell cars, thus reducing consumption of oil.



General Principles

Principle of Relativity All the laws of physics are the same in all inertial reference frames.
* The speed of light ¢ is the same in all inertial reference frames.

* No particle or causal influence can travel at a speed greater than c.



Important Concepts

Space

Spatial measurements depend on the motion of the experimenter
relative to the events. An object’s length 1s the difference between
simultaneous measurements of the positions of both ends.

Proper length € is the length of an object measured in a
reference frame in which the object is at rest. The object’s
length in a frame 1n which the object moves with velocity v is

L=V1-pt=¢(

This is called length contraction.



Important Concepts

Momentum

The law of conservation of momentum is *

valid in all inertial reference frames if the
momentum of a particle with velocity u 1s
p = 7ypmu, where

Yp = 11— u?c?

The momentum approaches @ asu — ¢.

b t— — — — — — — — —



Important Concepts

Invariants are quantities that have the same value in all inertial
reference frames.

Spacetime interval: s* = (cAr)* — (Ax)?

Particle rest energy: Ef = (mc?)* = E* — (pc)?



Important Concepts
Time

Time measurements depend on the motion of the experimenter
relative to the events. Events that are simultaneous in reference
frame S are not simultaneous in frame S’ moving relative to S.

Proper time A7 is the time interval between two events
measured in a reference frame in which the events occur at the
same position. The time interval between the events in a frame
moving with relative velocity v 1s

At = A7/V1 — B2 = At

This i1s called time dilation.



Important Concepts

Energy

The law of conservation of energy is
valid in all inertial reference frames if the
energy of a particle with velocity u 1s
= '}fpm{:z =E,+ K

Rest energy E, = mc*

o ————_——_——_——_— —_— —

Kinetic energy K = (y, — l)mc”. 0



Important Concepts

Mass-energy equivalence

Mass m can be transformed into energy E = mc”.

Ay

Energy can be transformed into mass m = AE/c?.



Applications

An event happens at a specific place in space and time. Spacetime
coordinates are (x, t) in frame S and (x’, t") in frame S’.



Applications

A reference frame is a coordinate system with meter sticks and
clocks for measuring events. Experimenters at rest relative to
each other share the same reference frame.



Applications

The Lorentz transformations transform spacetime coordinates and velocities between reference frames S and S'.

x'=vy(x — vi) x =7y + '
y =y y=y
' =z z=12'
t" = y(t — w/c?) t=y(t' + vx'lc?)
, u—v '+ v
e W= 2
1 — wvle 1 + u'vic

where u and u" are the x- and x"-components of velocity.

Vv
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