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2 jian l. zhou and andr�e l. titsThe di�culties in solving (SI), and in particular (CMM), stem mostly from the factsthat (i) the accurate evaluation of �[0;1] for each x involves a potentially time con-suming global maximization, and (ii) �[0;1] is nondi�erentiable in general, even when� is smooth. Various approaches have been proposed to circumvent these di�culties(see [18] for a recent survey). Some algorithms are based on the characterization ofmaximizers of �(x; �) over [0; 1] in the neighborhood of a local solution of (SI) (see,e.g., [12], [17], [20], [34]). Under mild assumptions, the set of such maximizers con-tains a \small" number of points (for small n). The solution of the original problemcan then be reduced to the solution of a problem involving approximations to thesemaximizers !i(x). Application of Newton's method, or of a Sequential Quadratic Pro-gramming (SQP) method to the reduced problem (with constraints �(x; !i(x)) � 0)brings about a fast local rate of convergence. However global convergence, when in-sured at all, involves a potentially very costly line search ([5], [42]). A large class ofglobally convergent algorithms, on the other hand, is based on approximating �[0;1]by means of progressively �ner discretizations of [0; 1], i.e., substituting for (SI) theproblems(DSI) minimize f(x) s.t. �(x; !) � 0 8! 2 
with, for instance, 
 = f0; 1q ; 2q ; � � � ; (q � 1)q ; 1g;where q, a positive integer, is progressively increased (see, e.g., [10], [13], [16], [27],[31], [32], [34], [38]). The overall performance of these algorithms depends heavily onthe performance at each discretization level, especially when q becomes large.Problem (DSI) involves �nitely many smooth constraints and thus in principlecan be solved by classical constrained optimization techniques. Yet typically, if q islarge compared to the number n of variables, only a small portion of the constraintsare active at the solution. Suitably taking advantage of this situation may lead tosubstantial computational savings. Similar considerations arise in connection withinequality constrained optimization problems of the form(MC) minimize f(x) s.t. �i(x) � 0 i = 0; : : : ; `;in which ` � n, i.e., in which constraints far outnumber variables. The minimaxproblem (here, with �nitely many objective functions) is an important special case ofthis problem. Examples of (MC) include mechanical design problems involving trusses(see, e.g., [37], [43] or papers in [6], [25]). Note that there is no essential di�erencebetween (DSI) and (MC). Their similarity is particularly strong if the constraints in(MC) are \sequentially related" in the sense that the values taken by �i are typicallyclose to those taken by �i+1.In [32], [27], (DSI) is solved by means of �rst order (thus, slow) methods. In[32], based on ideas of Zoutendijk [46] and Polak [29, Section 4.3], the construction ofthe search direction at iteration k makes use of the gradients rx�(xk ; !) at all points! 2 
 at which �(xk ; !) � �� (\�-active" constraints), where � > 0 is appropriatelysmall. When the discretization is �ne, however, the set of such points is often undulylarge as it contains entire neighborhoods of local maximizers. In [27], it is shown thatonly a small subset of these points need be used, by suitably detecting \critical" valuesof ! and \remembering" them from iteration to iteration in a manner reminiscent ofbundle type methods in nonsmooth optimization (see, e.g., [21], [23]). Speci�cally,



sqp for finely discretized minimax 3at iteration k, a �rst order direction dk is computed using a certain subset 
k of
. After a new iterate xk+1 has been obtained, a new set 
k+1 is constructed byincluding (i) all !'s that globally maximize �(xk+1; �) over 
; (ii) all !'s that globallymaximize �(�xk+1; �), where �xk+1 is a trial point that was rejected in the previousline search; and (iii) all !'s in 
k that a�ected direction dk. This scheme is shownin [27] to induce global convergence. It is e�cient because, under mild assumptions,the dimension of the quadratic programming problem that yields dk is moderate, andgradient evaluations are only required at a few grid points. However, at each level ofdiscretization (i.e., for each �xed q), the algorithm proposed in [27] (like that proposedin [32]) exhibits at best a linear rate of convergence.SQP-type algorithms, while often impractical for problems with large numbers ofvariables, are particularly suited to various classes of engineering applications wherethe number of variables is not too large but evaluations of objective/constraint func-tions and of their gradients are highly time consuming. Indeed, as these algorithmsuse quadratic programs as successive models, progress between (expensive) functionevaluations is typically signi�cantly better than with algorithms making use of merelinear systems of equations as models. In the context of SQP-type algorithms forthe solution of problems with many constraints, Biggs [1] proposed to replace withequality constraints the active inequality constraints and to ignore all other inequalityconstraints in the computation of the search direction. Much later, Polak and Tits[34] and Mine et al. [24] adapted the \�-active" idea to the SQP context, and Pow-ell [36] proposed a \tolerant" algorithm for linearly constrained problems, which alsoborrows from the \�-active" concept. Again, however, in the case of �nely discretizedSIP problems, the number of constraints may be unduly large. Recently, Conn and Li[4] proposed a working set scheme for the minimax problem and obtained promisingnumerical results. Finally, in [41], Schittkowski proposes modi�cations of standardSQP methods for the solution of problems with many constraints. However, no con-vergence analysis is provided; in practice global convergence may or may not takeplace, depending on the heuristics used to update an active working set of constraints.In this paper, we propose and analyze an SQP-type algorithm based on the schemeintroduced in [27] for the special case of the discretized minimax problem(P) minimize max!2
 �(x; !);where 
 is again a �nite set. The general discretized SIP case involves additionalintrinsic di�culties and will be considered in a separate paper. We de�ne�(x) = max!2
 �(x; !):At iteration k, given an iterate xk and a subset 
k of 
, a search direction dk isobtained as the solution of the \quadratic program" QP (xk; Hk;
k).2 Here, for anyx 2 IRn, H 2 IRn�n symmetric positive de�nite, and 
̂ � 
, QP (x;H; 
̂) is de�nedbyQP (x;H; 
̂) minimize 12 hd;Hdi+�0̂
(x; d); s.t. d 2 Rn2QP (x;H; 
̂) is equivalent to the true quadratic program (over Rn+1)minimize 12 hd;Hdi+ d0 s.t. �(x; !) + hrx�(x;!); di ��
̂(x)� d0 � 0 8! 2 
̂:.



4 jian l. zhou and andr�e l. titswhere(1:1) �0̂
(x; d) = max!2
̂ f�(x; !) + hrx�(x; !); dig ��
̂(x)is a �rst order approximation to �
̂(x+ d)��
̂(x), with�
̂(x) = max!2
̂ �(x; !):A line search (e.g., of Armijo type such as that suggested by Han [14], [15]) is performedalong direction dk to obtain a next iterate xk+1 = xk + tkdk, with tk 2 (0; 1]; Hk isupdated to Hk+1; and a new subset 
k+1 of 
 is constructed according to a schemeinspired from that used in [27]. In particular, if tk < 1, 
k+1 includes a point �!k thatcaused the last trial point to be rejected by the line search. However, in the presentcontext, a di�culty arises. Suppose �!k was not in 
k. The rationale for includingit in 
k+1 is that, had it been included in 
k, a larger step would likely have beenaccepted (since �!k is now preventing a larger step). In the context of [27] where a�rst order search direction is used (i.e., Hk = I for all k), it follows that dk+1 willlikely allow a larger step to be taken. In the current framework however it is unclearwhether �!k is of any help in the new metric Hk+1, and global convergence may notoccur. One remedy would be to renounce updating Hk whenever tk < 1 and �!k 62 
kis picked by the algorithm. As it will be proved that, eventually, �!k can only be pickedfrom 
k (Lemma 3.14), such scheme will not prevent normal updating from eventuallytaking place (thus will not jeopardize the anticipated superlinear rate of convergence).Yet, disallowing normal updating of Hk in early iterations can hinder the algorithm'se�ectiveness. To obviate this e�ect we will disallow normal updating of Hk only if theadditional condition tk < � is satis�ed, where � is a small positive number. Indeed,if tk stays bounded away from zero, then fdkg must go to zero (Lemma 3.3(iv)) andglobal convergence takes place in any case (Lemma 3.4(ii)). It is shown below thatthis overall algorithm indeed achieves global convergence and maintains a fast rate oflocal convergence.A well known possible adverse e�ect is that the line search may truncate theunit step even arbitrarily close to a solution, thus preventing superlinear convergence(Maratos e�ect). It will be shown that this can be avoided by incorporating in thebasic algorithm standard techniques such as a second order correction (see, e.g., [28],[44]).The algorithm stated and analyzed below (Algorithm 2.1) allows that additional!'s be included in 
k at each iteration. Clever heuristics may signi�cantly speed upthe algorithm, especially in early iterations. In our implementation (discussed in asubsequent section) we paid special attention to �nely discretized SIP problems inwhich �(x; !) is continuous in ! and to other problems in which \adjacent" objectivesare closely related.The remainder of paper is organized as follows. The basic algorithm is stated inx2. A complete convergence analysis is presented in x3. In x4, implementation issuesare discussed, and numerical results are reported. x5 is devoted to �nal remarks. Thepaper ends with an appendix, x6, containing proofs of results in x3.2. Preliminaries and Algorithm Statement. The following assumption ismade throughout.Assumption 1. For every ! 2 
, �(�; !) : IRn ! IR is continuously di�erentiable.



sqp for finely discretized minimax 5Let x� be a local minimizer for (P). Then (see, e.g., [15]) it is a KKT point for (P),i.e., there exist KKT multipliers ��!, ! 2 
 such that(2:1) 8>>>>><>>>>>: X!2
��!rx�(x�; !) = 0��! � 0 8! 2 
 and X!2
��! = 1��! = 0 8! 2 
 s.t. �(x�; !) < �(x�):It is readily veri�ed that there is a natural correspondence between the KKT pointsof (P) and those of the equivalent constrained minimization problem(Peq) minimize x0 s.t. �(x) � x0; x 2 Rn; x0 2 R:Speci�cally, the following holds.Lemma 2.1. A point x� is a KKT point for (P) if and only if (x�;�(x�)) is aKKT point for (Peq). The associated KKT multipliers are identical.Similarly, given x 2 Rn, H = HT > 0 and 
̂ � 
, if d solves QP (x;H; 
̂), thenit is a KKT point for QP (x;H; 
̂), i.e., there exist �!, ! 2 
̂ such that(2:2) 8>>>>>><>>>>>>:Hd+X!2
̂�!rx�(x; !) = 0�! � 0 8! 2 
̂ and X!2
̂�! = 1�! = 0 8! 2 
̂ s.t. �(x; !) + hrx�(x; !); di ��
̂(x) < �0̂
(x; d):Moreover, since '(d) := 12 hd;Hdi+ �0̂
(x; d) is strictly convex in d (sum of a strictlyconvex function and of a convex function), it has a unique minimizer d�. It followsthat the equivalent quadratic program in Rn+1 has a unique minimizer (d�; '(d�))and thus that QP (x;H; 
̂) has d�, its global minimizer, as its only KKT point.We are now ready to make precise the rule for updating 
k. Following [27], 
k+1contains the union of three sets.3 Given x 2 Rn, let
max(x) = f! 2 
 : �(x; !) = �(x)gbe the set of maximizers of �(x; �). The �rst component of 
k+1 is 
max(xk+1). Indeedif 
max(xk+1) were not included, dk+1 might not be a direction of descent for � atxk+1. The second component of 
k+1 is obtained from the line search. While theessence of the ideas put forth in this paper is independent of the speci�cs of this linesearch, for the sake of exposition, we will consider the case of an Armijo-type linesearch inspired from the line search used by Han [14], [15]. Thus xk+1 = xk + tkdk,where tk is the largest number t in f1; �; �2; : : :g satisfying(2:3) �(xk + tdk) � �(xk)� �thdk ; Hkdki;where � 2 (0; 1=2) and � 2 (0; 1) are �xed. Suppose the line search at iteration kresults in tk < 1, implying that the line search test (2.3) is violated at xk + tk� dk. A3In [27], 
k+1 is set to be equal to this union.



6 jian l. zhou and andr�e l. titsnext search direction taking this into account is called for. Thus, 
k+1 will includesome �!k such that �(xk + tk� dk; �!k) > �(xk)� �tk� hdk; Hkdki:Finally, to avoid zigzagging (which could prevent global convergence; see the examplein [27]) it is important that key elements in 
k be kept in 
k+1. A natural choice isto preserve all ! 2 
k that are binding at the solution of QP (xk ; Hk;
k), i.e., those! for which the corresponding multiplier �k;! is strictly positive4 (clearly, this is alsoneeded for fast local convergence). Thus, the third component of 
k+1 is
bk = f! 2 
k : �k;! > 0g:Thus the overall algorithm for the solution of (P) is as follows.Algorithm 2.1.Parameters. � 2 (0; 12 ), � 2 (0; 1), 0 < � � 1.Data. x0 2 IRn, H0 2 IRn�n with H0 = HT0 > 0.Step 0. Initialization. Set k = 0 and pick 
0 � 
max(x0).Step 1. Computation of search direction and step length.(i). Compute dk by solving QP (xk; Hk;
k). If dk = 0, stop.(ii). Compute tk, the �rst number t in the sequence f1; �; �2; : : :g satisfying(2:4) �(xk + tdk) � �(xk)� �thdk ; Hkdki:Step 2. Updates. Set xk+1 = xk + tkdk. If tk < 1, pick �!k such that�(xk + tk� dk; �!k) > �(xk)� �tk� hdk; Hkdki:Pick(2:5) 
k+1 � �
max(xk+1) [ 
bk if tk = 1
max(xk+1) [ 
bk [ f�!kg if tk < 1.If tk � � and �!k 62 
k, set Hk+1 = Hk; otherwise, compute a new positive de�niteapproximation Hk+1 to the Hessian of the Lagrangian of (P) at the solution. Setk = k + 1. Go back to Step 1.3. Convergence Analysis. Although (P) takes the form of an ordinary min-imax problem, the classical convergence analysis for such problems (e.g., [14], [15])cannot be directly applied to the present situation since, at each iteration, only asubset of the discretized set 
 is employed to construct a search direction.3.1. Global convergence. The following additional standard assumptions aremade.Assumption 2. For any x0 2 IRn, the level set fx 2 IRn : �(x) � �(x0)g iscompact.4If the multiplier vector associated with QP (xk; Hk;
k) is not unique, any of the choices isappropriate.



sqp for finely discretized minimax 7Assumption 3. There exist �1, �2 > 0 such that�1kdk2 � hd;Hkdi � �2kdk2 8d 2 IRn;8k:We �rst show that, owing to the fact that 
k always contains 
max(xk), Algo-rithm 2.1 is well de�ned.Lemma 3.1. At any iteration k there exists �tk > 0 such that, for all t 2 [0; �tk],�(xk + tdk) � �(xk)� �thdk ; Hkdki:Proof. Since dk solves QP (xk; Hk;
k), it yields an objective value no larger thanthat at d = 0 for that problem, and thus�0
k (xk; dk) � �12hdk; Hkdki:In view of (1.1) and Assumption 3, it follows thathr�(xk ; !); dki < �12hdk; Hkdki 8! 2 
k :Since � < 1=2 and since 
k � 
max(xk), it then follows that there exists t̂k > 0 suchthat, for all t 2 [0; t̂k], �
k(xk + tdk) � �(xk)� �thdk ; Hkdki:On the other hand, since 
max(xk) � 
k, �(xk ; !) < �(xk) for all ! 62 
k. In viewof the continuity assumptions, this implies that there exists �tk > 0 such that, for allt 2 [0; �tk], �(xk + tdk) � �(xk)� �thdk ; Hkdki;proving the claim.Thus the line search is always well de�ned and Algorithm 2.1 stops only when dk = 0.The following lemma implies that, if this occurs, the last point xk must be a KKTpoint.Lemma 3.2. Let H > 0, x 2 IRn, and 
̂ � 
 with �
̂(x) = �(x). Then theunique KKT point d of QP (x;H; 
̂) is zero if and only if x is a KKT point for (P).Proof. Suppose the unique KKT point of QP (x;H; 
̂) is d = 0 and let f�̂! : ! 2
̂g be the associated KKT multipliers. In view of (2.2) and since �
̂(x) = �(x), theKKT condition (2.1) for (P) holds at x with multipliers �! = �̂! for ! 2 
̂ and �! = 0for ! 2 
n
̂. Thus, x is a KKT point for (P). The converse is proved similarly.We now assume that an in�nite sequence fxkg is generated by Algorithm 2.1.The following facts are direct consequences of Lemma 3.1 and of our assumptions.Lemma 3.3. (i) The sequence fxkg is bounded; (ii) the sequence fdkg is bounded;(iii) the sequence f�(xk)g converges; and (iv) the sequence ftkdkg converges to zero.Proof. The claims follow directly from Assumptions 1, 2, 3 and the fact that�(xk+1) � �(xk)��tkhdk; Hkdki (since jtkj � 1, convergence to zero of ftkhdk ; Hkdkigimplies convergence to zero of fh(tkdk); Hk(tkdk)ig).Now, let vk denote the optimal value of QP (xk; Hk;
k), i.e.,(3:1) vk = 12hdk; Hkdki+�0
k (xk; dk):



8 jian l. zhou and andr�e l. titsSince d = 0 is feasible for QP (xk; Hk;
k), vk is nonpositive for all k. It turns out thatconvergence of fdkg to zero is equivalent to convergence of fvkg to zero and impliesthat accumulation points of fxkg are KKT points. More generally, the following holds.Lemma 3.4. Let K � IN be an in�nite index set. Then, (i) fdkg converges tozero on K if and only if fvkg converges to zero on K; (ii) if fdkg converges to zeroon K, then all accumulation points of fxkgk2K are KKT points for (P).Proof. Since, for all k, �
k (xk) = �(xk), it follows from (1.1) and (2.2) withx = xk, H = Hk, 
̂ = 
k, d = dk, that, for all k and some �k;! � 0; ! 2 
k, withP!2
k �k;! = 1,�0
k (xk ; dk) = max!2
kf�(xk; !) + hrx�(xk ; !); dkig ��(xk)= X!2
k �k;!f�(xk ; !) + hrx�(xk ; !); dkig ��(xk)� X!2
k �k;!hrx�(xk ; !); dki;yielding, again from (2.2),(3:2) �0
k(xk ; dk) � �hdk; Hkdki:In view of (3.1), it follows that vk � �12hdk; Hkdki:Thus, the \if" part of (i) follows directly from Assumption 3. On the other hand, iffdkg goes to zero on K, since fxkg is bounded, it follows from (1.1) thatlimk2K;k!1�0
k (xk; dk) = 0:The \only if" part of (i) then follows from (3.1).To prove (ii), suppose fdkg goes to zero on K and let K 0 � K be any in�niteindex set such that fxkg converges to some x̂ onK 0. Without loss of generality, assume
k = 
̂ for all k 2 K 0, for some 
̂ � 
. Then �
̂(xk) = �(xk) for all k 2 K 0 and thus�
̂(x�) = �(x�). In view of Assumption 3 and of the boundedness of f�k;!g for all! 2 
, there exists K 00 � K 0 such that fHkg converges to some H� on K 00 and, foreach ! 2 
̂, there exists �̂! such that f�k;!g converges to �̂! on K 00. Letting �̂! = 0for ! 2 
n
̂, taking limits for k 2 K 00 in the optimality condition (2.2) associatedwith QP (xk; Hk; 
̂) and comparing with (2.1) shows that x̂ is a KKT point for (P).The next lemma, which is the same as Lemma 4.7 in [21, Chapter 3], is centralto the proof of global convergence.Lemma 3.5. Let x� 2 IRn be such thatlim infk!1 maxfjvkj; kxk � x�kg = 0:Then, x� is a KKT point for (P).Proof. The assumption implies that there exists an in�nite index set K such thatfxkg converges to x� and fvkg converges to zero, both on K. Thus, the conclusionfollows from Lemma 3.4.



sqp for finely discretized minimax 9The establishment of the global convergence of Algorithm 2.1 employs a contra-diction argument inspired from [21, Chapter 3]. If fxkg has a limit point x� that isnot a KKT point, vk is bounded away from zero on the corresponding subsequence(Lemma 3.5), with a uniform lower bound �� > 0 for all subsequences over which fxkgconverges to x�. It is shown below (Lemma 3.6) that in such case jvk+1j is signi�cantlysmaller than jvkj on any such subsequenceK. Since, in view of Lemma 3.3(iv), fxk+1galso converges to x�, jvk+2j is also signi�cantly smaller than jvk+1j. A careful repeatedapplication of this argument shows that jvkj becomes smaller than �� on a sequenceat \�nite distance" from K, a contradiction.The proof of the following lemma is inspired from that of Lemma 4.11 in [21,Chapter 3] (see also the proof of Lemma 3.15 in [44]) and is given in the appendix. Itrelies crucially on the assumption that fkHk+1�Hkkg ! 0 whenever ftkg ! 0, whichis insured in Algorithm 2.1 by setting Hk+1 = Hk when tk is small and �!k 62 
k; italso relies on the inclusion in 
k+1 of the second and third subsets in (2.5).Lemma 3.6. There exists c > 0 such that, if K is an in�nite index set on whichfdkg is bounded away from zero, then there exists an integer N such that(3:3) jvk+1j � jvkj � cjvkj2; 8k � N; k 2 K:Repeated application of this results yields the following.Lemma 3.7. There exists c > 0 such that, if K is an in�nite index set on whichfxkg is bounded away from KKT points, then, given any positive integer i0, thereexists an integer N such thatjvk+i+1j � jvk+ij � cjvk+ij2 8k � N; k 2 K;8i 2 [0; i0]:Proof. For any integer i, in view of Lemma 3.3(iv), fxk+ig is bounded away fromKKT points for k 2 K and this in turn implies, in view of Lemma 3.4, that fdk+ig isbounded away from zero for k 2 K. Therefore, in view of Lemma 3.6, for each i thereexists Ni such that jvk+i+1j � jvk+ij � cjvk+ij2; 8k � Ni; k 2 K:Choosing N = max0�i�i0fNig proves the claim.Lemma 3.8. Given � > 0 and � > 0, there exists an integer i0 depending only on� and � such that, for any sequence fzig of real numbers satisfying0 � zi+1 � zi � �z2i 8i 2 IN;zi < � for all i � i0.Proof. See the appendix.We are now ready to establish the global convergence of Algorithm 2.1. The factsthat c in Lemma 3.7 is independent of K and that i0 in Lemma 3.8 is independent ofz0 play a crucial role in the proof.Theorem 3.9. Let fxkg be the sequence generated by Algorithm 2.1. Then, everyaccumulation point of fxkg is a KKT point.Proof. Let x� and K be such that fxkg converges to x� on K, an in�nite indexset. Proceeding by contradiction, we assume x� is not a KKT point. It follows fromLemma 3.5 that there exists �� > 0 such that(3:4) lim infk!1 maxfjvkj; kxk � x�kg > ��:



10 jian l. zhou and andr�e l. titsThus, fvkg is bounded away from zero on K. In view of Lemma 3.4, fdkg is alsobounded away from zero on K and, in view of Lemma 3.3(iv), ftkg converges to zeroon K. Let c be as given by Lemma 3.7. Let i0 be as given in Lemma 3.8 with � = ��and � = c. In view of Lemma 3.7, there exists an integer N such thatjvk+i+1j � jvk+ij � cjvk+ij2; 8k � N; k 2 K;8i 2 [0; i0]:From the de�nition of i0, it follows from Lemma 3.8 with zi = jvk+ij, k 2 K, i =0; : : : ; i0 and zi = 0, k 2 K, i > i0, thatjvk+i0 j < �� 8k � N; k 2 K:On the other hand, since by assumption x� is not a KKT point and since in view ofLemma 3.3(iv) fxk+i0g also converges to x� on K, it follows from (3.4) thatlim infk2K;k!1 jvk+i0 j > ��;a contradiction.3.2. Local convergence. Under additional regularity conditions, it is shownthat, close to a strong local minimizer x�, the right hand side of (2.5) becomes equalto 
max(x�) for all k and no ! 2 
n
max(x�) hinders the line search, so that Al-gorithm 2.1 behaves as if solving (P) with 
 replaced with 
max(x�). Further, it isshown that Hk will be updated normally, thus will not be prevented from asymptoti-cally suitably approximating r2L(x�; ��), the Hessian of the Lagrangian at the limitKKT pair. If Hk does become a suitable approximation to r2L(x�; ��) and if the fullstep of one is eventually accepted by the line search, 2-step superlinear convergencewill result.Assumption 1 is replaced by the following.Assumption 1'. For every ! 2 
, the function �(�; !) : IRn ! IR is three timescontinuously di�erentiable.Let x� be an accumulation point of fxkg (thus a KKT point for (P)).Assumption 4. Any scalars �!, ! 2 
max(x�), satisfyingX!2
max(x�)�!rx�(x�; !) = 0 and X!2
max(x�)�! = 0must be all zero.Thus the KKT multipliers ��!, ! 2 
, corresponding to x�, for problem (P), areunique.Assumption 5. The second order su�ciency conditions with strict complemen-tary slackness are satis�ed at x�, i.e. (see, e.g., [14]), ��! > 0 for all ! 2 
max(x�)and hd;r2xxL(x�; ��)di > 0; 8d 2 S�; d 6= 0;with r2xxL(x�; ��) = X!2
max(x�)��!r2xx�(x�; !)and S� = fd : hd;rx�(x�; !)i = 0 8! 2 
max(x�)g:



sqp for finely discretized minimax 11The following result is standard for ordinary constrained problems (see, e.g., [8,Theorem 2.3.2]). A proof in the minimax case is given in the appendix for sake ofcompleteness.Lemma 3.10. The point x� is an isolated KKT point for (P).Proposition 3.11. The entire sequence fxkg converges to x�.Proof. The claim follows from Theorem 3.9, Lemma 3.10, and Lemma 3.3(iv).Much of the remainder of this section is devoted to showing that, close to x�,the right hand side of (2.5) remains constant and equal to 
max(x�), and no ! 62
n
max(x�) hinders the line search, i.e., Algorithm 2.1 eventually behaves as if solvinga minimax problem of the typeminimize max!2
̂ �(x; !)(with 
̂ = 
max(x�)) with 
k always set to be equal to 
̂ instead of updated accordingto the rule in Step 2. A consequence of this is that rate of convergence results obtainedfor such standard \constant 
k" algorithms hold for Algorithm 2.1. The �rst step isto show that, for k large enough, 
max(x�) � 
k (Lemma 3.14). This is �rst provedon a subsequence using Lemma 3.7(ii).Lemma 3.12. There exists an in�nite index set K such that(3:5) 
max(x�) � 
bk 8k 2 K:Proof. First, there exists an in�nite index set K such that fdkg converges to zeroon K. Indeed, if fdkg were bounded away from zero, it would follow from Lemma 3.6that jvk+1j � jvk j � cjvkj2; 8k � Nfor some c > 0 and some integer N , implying that fvkg converges to zero, in violationof Lemma 3.4(i). Next, in view of the �nite cardinality of 
, without loss of generality,we may assume that 
bk = 
̂ for all k 2 K for some constant set 
̂. Let �k 2 Rj
jbe a vector with components f�k;!g such that �k;!, ! 2 
̂, are the KKT multipliersassociated with QP (xk; Hk;
k) and �k;! = 0, ! 2 
n
k. Without loss of generality,f�kg ! �̂ as k ! 1, k 2 K, for some �̂. We show that �̂ together with x� satis�esthe KKT conditions (2.1) of the original problem. In view of Proposition 3.11, sincefdkg converges to zero on K, taking limits in the optimality condition (2.2) associatedwith QP (xk; Hk;
k), k 2 K, yields, since �̂! = 0 for all ! 2 
n
k,X!2
 �̂!rx�(x�; !) = 0;�̂! � 0 8! 2 
 and X!2
 �̂! = 1;�̂! = 0 8! 2 
 s.t. �(x�; !) < �(x�):Therefore, x� with f�̂!; ! 2 
̂; �̂! = 0; ! 2 
n
̂g satis�es (2.1). Uniqueness of themultipliers for (P) at x� and strict complementarity (Assumptions 4 and 5) imply that! 2 
̂ for all ! such that �(x�; !) = �(x�), i.e., (3.5) holds.The following lemma, on the other hand, establishes that dk is small whenever(3.5) holds.



12 jian l. zhou and andr�e l. titsLemma 3.13. Let K be an in�nite index set such that 
max(x�) � 
k for allk 2 K. Then, fdkg converges to zero on K.Proof. Given 
̂ � 
, let K
̂ = fk 2 K : 
k = 
̂g. For any 
̂ � 
 such that K
̂is an in�nite set, we prove by contradiction that fdkg converges to zero on K
̂. Since
 has only �nitely many subsets, the lemma will follow. Thus suppose that for somein�nite index set K 0 � K
̂, fdkg is bounded away from zero on K 0 and let K 00 � K 0be such that fHkg converges to H� on K 00 for some H� > 0 (such K 00 exists in view ofAssumption 3). Since 
max(x�) � 
̂, QP (x�; H�; 
̂) has d = 0 as its unique solution(Lemma 3.2). It follows from [39, Theorem 2.1] that fdkg ! 0 as k ! 1, k 2 K 00,contradicting the fact that fdkg is bounded away from zero on K 0.Lemma 3.14. For k large enough, 
max(x�) � 
bk.Proof. In view of Lemma 3.12, the claim holds on an in�nite subsequence. Tocomplete the proof we show that, given any in�nite index set K such that 
max(x�) �
bk for all k 2 K, it holds that 
max(x�) � 
bk+1 for all k 2 K, k large enough. Inview of the construction of 
k+1, it is enough to show that �k+1;! > 0 for all ! 2
max(x�), k 2 K, k large enough, where �k+1;!, ! 2 
k+1, are the KKT mutipliersassociated with QP (xk+1; Hk+1;
k+1). Thus let K be an in�nite index set such that
max(x�) � 
bk for all k 2 K (so that 
max(x�) � 
k+1 for all k 2 K). Lemma 3.13implies that fdk+1g converges to zero on K. Suppose by contradiction that thereexists !� 2 
max(x�) and an in�nite index set K 0 � K such that �k+1;!� = 0 forall k 2 K 0 (note that 
max(x�) is a �nite set). An argument similar to that used inthe proof of Lemma 3.12 shows that, in view of Assumption 4, ��!� = 0, contradictingstrict complementarity (Assumption 5).The following result directly follows from Lemmas 3.13 and 3.14.Lemma 3.15. The entire sequence fdkg converges to zero.This leads to the main result of this sectionProposition 3.16. For k large enough,
bk = 
max(x�);(3:6) �(xk + tdk; !) � �(xk)� �thdk ; Hkdki 8t 2 [0; 1]; ! 2 
n
max(x�);and �(xk+1; !) < �(xk+1) 8! 2 
n
max(x�):Proof. To prove the �rst claim, in view of Lemma 3.14, it su�ces to show that,for k large enough, 
bk � 
max(x�). To this end, let !̂ 2 
n
max(x�), i.e., supposethat �(x�; !̂) < �(x�): Our continuity assumption and Proposition 3.11 then implythat, for k large enough, �(xk ; !̂) < �(xk), or equivalently �(xk ; !̂) < max!2
k �(xk ; !),since by construction 
max(x�) � 
k. This, together with Proposition 3.11 andLemma 3.15 and the continuity assumption, implies that, for k large enough,�(xk ; !) + hrx�(xk ; !̂); dki < max!2
kf�(xk; !) + hrx�(xk ; !); dkig;so that �k;!̂ = 0 and !̂ 62 
bk, proving the �rst claim. The second and third claimsdirectly follow from Proposition 3.11, Lemma 3.15, and the continuity assumption.In view of Lemma 3.15, it follows from Proposition 3.16 that, if 
k+1 is alwayspicked to be equal to the right-hand side of (2.4) (rather than to merely contain it),



sqp for finely discretized minimax 13then, for k large enough, 
k = 
max(x�). Whether or not this is the case, for k largeenough, Algorithm 2.1 will behave exactly as if solving the problem(3:7) minimize max!2
max(x�)�(x; !)with 
k = 
max(x�) selected at each iteration. (Indeed any ! not in 
bk does not a�ectdirection dk and, when dk is small enough, any ! not in 
max(x�) does not a�ect theline search.) In particular, for k large enough, if some �!k is picked by Algorithm 2.1,it must already be in 
k. Thus Hk is eventually updated at every iteration and thelocal behavior of Algorithm 2.1 becomes identical to that of the algorithm proposedby Han [14], [15] (except for a di�erent rule for selecting tk satisfying (2.4)).Suppose that, as a result of the updating rule, Hk approaches the Hessian of theLagrangian in the sense that(3:8) limk!1 kPkfHk �r2xxL(x�; ��)gPkdkkkdkk = 0where the matrices Pk are de�ned byPk = I �Rk(RTkRk)�1RTkwith Rk = [rx�(x; !i)�rx�(x; !1) : i = 2; : : : ; s],5 !1; : : : ; !s being the elements of
max(x�); and suppose moreover that tk = 1 for k large enough. Then (see [14]), theconvergence rate is two-step superlinear, i.e.,limk!1 kxk+2 � x�kkxk � x�k = 0:To achieve tk = 1 for k large enough, it is necessary to introduce a scheme toavoid the Maratos e�ect. One option is to adopt a second order correction such as thatused in [28] and [45] (in the latter, it is combined with a \nonmonotone line search";using such line search here would entail a more complicated analysis). Speci�cally,Step 1(ii) in Algorithm 2.1 is replaced with the following.Step 1(ii1). If �(xk+dk) � �(xk)��hdk ; Hkdki, set ~dk = 0. Otherwise, computea correction ~dk solution of the problem6 in ~dminimize 12hdk + ~d;Hk(dk + ~d)i+ ~�0(xk + dk; xk; ~d)where(3:9) ~�0(xk + dk; xk; ~d) = max!2
kf�(xk + dk; !) + hr�(xk ; !); ~dig ��(xk + dk):If k ~dkk > kdkk, set ~dk = 0.Step 1(ii2). Compute tk, the �rst number t in the sequence f1; �; �2; : : :g satis-fying �(xk + tdk + t2 ~dk) � �(xk)� �thdk ; Hkdki:5Note that Pk remains invariant if in the de�nition of Rk the role of !1 is played by any other !i.6Alternatively, ~d could be selected as the solution of a linear least squares problem, see [28].



14 jian l. zhou and andr�e l. titsAlso, in Step 2 of Algorithm 2.1, xk+1 is set to xk + tkdk + t2k ~dk and, if tk < 1, �!k isany ! satisfying�(xk + tk� dk +� tk� �2 ~dk; !) > �(xk)� �tk� hdk ; Hkdki:It is readily checked that such modi�cation does not a�ect the analysis carried outin this section, the only necessary changes being to substitute, in the statements ofLemma 3.1 and of Lemma 6.1 and at various places in the proofs, all instances ofxk + tdk with xk + tdk + t2 ~dk (and similarly, mutatis mutandis, when tk or tk=� ispresent instead of t; the fact that k ~dkk � kdkk is enforced in the modi�ed algorithmis a key to the validity of the modi�ed proofs). Thus the modi�ed algorithm willeventually behave as if solving (3.7) with, at each iteration, 
k selected to be equal to
max(x�) and Hk normally updated. It is shown in [45] that, if (3.8) holds, the steptk = 1 will always be accepted for k large enough (in fact the proof in [45] makes useof the weaker assumptionlimk!1 kdTk PkfHk �r2xxL(x�; ��)gPkdkkkdkk2 = 0:It is also shown in [45] that ~dk = O(kdkk2). It follows that two-step superlinearconvergence is preserved when (3.8) holds.4. Implementation and numerical results. An e�cient implementation ofAlgorithm 2.1, including the Maratos e�ect avoidance scheme described at the end ofx3, has been developed as part of a C code dubbed CFSQP [22].7 Version 2.0 of CFSQPwas used to perform the numerical tests described below.The speci�cs of the CFSQP implementation are as follows. In Algorithm 2.1, therule for updating 
k only speci�es that it must contain a certain subset of \critical"points of 
. In practice, initial convergence is often sped up if additional \potentiallycritical" elements of 
 are also included. On the other hand, it is clear that increasingthe size of 
k increases the number of gradient evaluations per iteration and makesQP (xk; Hk;
k) more complex to solve. Thus a compromise must be struck. Variousheuristics come to mind (see, e.g., [41]). The current CFSQP implementation focusseson the frequent case where \adjacent" objectives are closely related (objectives are\sequentially related"). It follows the idea, used in [11], [27], to include in 
k theset 
``m� (xk) of \�-active left local maximizers" at xk , for some � > 0. A point!i 2 
 := f!0; : : : ; !qg is �-active if it belongs to
�(x) = f!i : �(x; !i) > �(x)� �g:It is a left local maximizer of � over 
 at x if one of the following three conditionsholds: (i) i 2 f1; : : : ; q � 1g and(4:1) �(x; !i) > �(x; !i�1)and(4:2) �(x; !i) � �(x; !i+1);7CFSQP is available from the authors.



sqp for finely discretized minimax 15(ii) i = 0 and (4.2); (iii) i = q and (4.1). We also found that using 
0 = 
max(x0)often gave a poor initial search direction and performance could be improved if ad-ditional points were heuristically selected for the �rst iteration. For many problems,the performance was improved if the end points !0 and !q were included in 
0. Thus,for 
0 and 
k+1 (in Steps 0 and 2 of Algorithm 2.1), CFSQP selects respectively
0 = 
max(x0) [
``m� (x0) [ f!0g [ f!qgand 
k+1 = �
max(xk+1) [ 
bk [ 
``m� (xk+1) if tk = 1
max(xk+1) [ 
bk [ f�!kg [ 
``m� (xk+1) if tk < 1.Many problems encountered in practice involve more than one set of \sequentiallyrelated" objectives, e.g., a �nely discretized version of the problem(4:3) minimize maxfsup! �1(x; !); : : : ; sup! �`(x; !)g;where ! ranges over some interval. An important example of this type of problem isChebyshev approximation, which has the formminimize sup! j�(x; !)j;or, equivalently minimize maxfsup! �(x; !); sup! ��(x; !)g:All but the last problem in the numerical tests discussed below are of this type. Notethat Algorithm 2.1 and the analysis of x3 apply without modi�cation to (4.3) by \lin-early ordering" the discrete objectives as, say, �1(�; !10), : : :, �1(�; !1q1), �2(�; !20), : : :,�`(�; !q̀`), where it is assumed that the ith set contains of qi objective functions. How-ever, in its selection of 
k, the CFSQP implementation takes into account the groupingof the objectives into subsets. Speci�cally, 
0 and 
k include the global maximizersand the �-active left local maximizers for each of the �i's considered independently;and 
0 includes the \end-points" for each of the �i's.The following parameter values are used in CFSQP: � = 0:1, � = 0:5, � is thesquare root of the machine precision, and � = 1 (in 
``m� (x)). For the solution of theQP subproblems, CFSQP invokes QLD, a code due to Powell and Schittkowski [40]. Hkis updated using the BFGS formula with Powell's modi�cation [35] with the followingstipulations: the evaluation of the gradient of the Lagrangian function is based onthe KKT multipliers corresponding to the QP subproblem and multipliers associatedwith values of ! not used in the QP are set to 0. Assigning the value 0 to multipliersassociated with constraints not considered in the current QP subproblem is equivalentto considering them inactive, which is consistent with the intuition underlying theselection of 
k.The numerical results reported below were obtained on discretized versions ofnine test problems borrowed from the literature. Problems OET 1 through OET 7 aretaken from [26], HET-Z from [19], and PT from [34]. Problems OET 1 through OET 7and HET-Z are of the form minimize max!2I j�(x; !)j;with � and I as follows (the �'s are the components of x):



16 jian l. zhou and andr�e l. titsOET 1: �(x; !) = !2 � (�1! + �2exp(!)), I = [0; 2]; x0 = (1; 1).OET 2: �(x; !) = 11+! � �1exp(�2!), I = [�0:5; 0:5]; x0 = (1;�1).OET 3: �(x; !) = sin(!)� (�1 + �2! + �3!2), I = [0; 1]; x0 = (1; 1; 1).OET 4: �(x; !) = exp(!)� �1+�2!1+�3! , I = [0; 1]; x0 = (1; 1; 1).OET 5: �(x; !) = p! � (�4 � (�1!2 + �2! + �3)2), I = [0:25; 1]; x0 = (1; 1; 1; 1).OET 6: �(x; !) = 11+!�(�1exp(�3!)+�2exp(�4!)), I = [�0:5; 0:5]; x0 = (1; 1;�3;�1).OET 7: �(x; !) = 11+!�(�1exp(�4!)+�2exp(�5!)+�3exp(�6!)), I = [�0:5; 0:5]; x0 =(1; 1; 1;�7;�3;�1).HET-Z: �(x; !) = (1� !2)� (0:5x2 � 2x!), I = [�1; 1]; x0 = 1.Problem PT is of the form minimize max!2I �(x; !);with �(x; !) = (2!2 � 1)x+ !(1� !)(1� x), I = [0; 1] and x0 = 5.To assess the e�ciency of the scheme proposed in this paper, we compared theCFSQP implementation of Algorithm 2.1 with two algorithms di�ering from it only inthe selection of 
k at each iteration. In algorithm FULL, 
k = 
 at each iteration,which essentially corresponds to Han's algorithm [14], [15]. In algorithm �-ACT, asimple \�-active" scheme is used, speci�cally, 
k = 
�(xk) for all k, with � = 0:1(both for +� and �� in the case of the �rst 8 problems). For all three algorithms, theoptimization process was terminated whenever kdkk � 1.E-4 was achieved.In Tables 1 and 2, results are reported for 101 and 501 uniformly spaced meshpoints, respectively (for a total of, respectively, 202 and 1002 \discrete objectives" inthe case of the �rst 8 problems); speci�cally,
 = fa; a+ b� aq ; a+ 2(b� a)q ; : : : ; bg;with q = 100 and 500, respectively, where a and b are the end points of the intervalof variation of ! for the problem under consideration. In the tables, NF is the numberof evaluations of objective function �,8;9 IT is the total number of iterations,P j
kjis the sum over all iterations k of the cardinality of 
k (in case of NEW and FULL, it isequal to the total number of gradient evaluations), and j
�j is the number of points in
k = 
� at the stopping point xk = x�. TIME indicates the execution time in seconds,and OBJECTIVE the value of the objective function at x�. All tests were conducted ona SUN/SPARC 1 workstation.The following observations may be made. In most cases, the number of iterationsand the total number of function evaluations are lowest for FULL and highest for NEW.This is expected though since the search directions in NEW are computed based on amuch simpler QP model. Note, however, that the increase in the number of iterationsand function evaluations when using NEW instead of FULL is typically moderate. Incontrast, NEW provides dramatic savings in terms of number of gradient evaluations andof size of the QP subproblems (whereas the savings achieved by �-ACT are modest).Note, in particular, that j
�j remains essentially unchanged when the number of meshpoints is increased from 101 to 501. The decrease in computational e�ort achieved byNEW is clearly evident in the dramatically lower TIME of execution.8For the �rst eight problems, all numbers in this column are pessimistic by a factor of about 2:evaluation of +� and �� at a given point counts as two function evaluations.9Note that NF is in general not a multiple of the cardinality of 
. Indeed computation of ~dkinvolves evaluating �(xk + dk; !) only for ! 2 
k (see (3.9)).



sqp for finely discretized minimax 17Finally note that, in the implementation used for these numerical tests, the QPsolver does not take into account information from the solution of the previous QPsubproblem when starting a new one (QLD does not allow for such \crash start").One could argue that a crash start may signi�cantly speed up the solution of QPsubproblems in algorithm FULL, its e�ect being akin to drastically reducing the numberof constraints to be dealt with by the QP solver; and that, as a result, if a crashstart were used, the computational cost of solving QP subproblems in FULL might becomparable to that of solving QP subproblems in NEW. To investigate this issue, weconducted additional tests with QPSOL [9] (which allows for crash starts) replacingQLD. It was observed that a crash start is helpful only in the �nal iterations, whenthe active set is correctly identi�ed. Our interpretation of this phenomenon is that,in early iterations, while as evidenced by the good behavior of NEW the crash set is areasonable approximation for the active set in the sense that there are values of ! inthe crash set close to most values of ! in the true active set, there nevertheless maybe very little (or none at all) overlap between these two sets. As a result a crash setmay be of no use to an o�-the-shelf QP solver. Overall, the QP-solving time in NEW isstill signi�cantly lower then the QP solving time in FULL.PROB n ALGO NF IT P j
kj j
�j TIME OBJECTIVE kd�kOET 1 2 NEW 2546 10 56 6 0.88 0.53819574 0.38E-16FULL 1445 6 1212 202 1.54 0.53813894 0.97E-14�-ACT 2444 8 560 92 1.63 0.53819574 0.38E-16OET 2 2 NEW 861 4 22 6 0.53 0.08715336 0.12E-05FULL 642 3 606 202 1.05 0.08715640 0.47E-05�-ACT 842 4 448 202 1.00 0.08716226 0.35E-04OET 3 3 NEW 1805 7 47 8 0.96 0.00450481 0.51E-15FULL 1387 5 1010 202 2.31 0.00450481 0.11E-16�-ACT 1905 7 988 202 1.81 0.00450481 0.19E-15OET 4 3 NEW 2805 10 68 8 1.34 0.00429463 0.27E-11FULL 2472 9 1818 202 4.50 0.00429463 0.76E-11�-ACT 3525 12 1494 202 4.51 0.00429463 0.37E-10OET 5 4 NEW 6727 19 152 8 3.26 0.00264951 0.23E-05FULL 5533 18 3636 202 12.2 0.00264951 0.29E-06�-ACT 7407 22 3360 202 13.0 0.00264951 0.24E-05OET 6 4 NEW 4314 14 128 10 2.54 0.00206863 0.18E-09FULL 3765 12 2424 202 9.47 0.00206878 0.22E-06�-ACT 4035 13 2376 202 10.2 0.00206880 0.39E-06OET 7 6 NEW 38106 97 1186 12 28.6 0.00006644 0.98E-04FULL 11887 31 6262 202 55.8 0.00004432 0.18E-12�-ACT 25974 68 13274 202 124. 0.00004432 0.32E-12HET-Z 1 NEW 606 2 7 3 0.29 1.00000000 0.22E-15FULL 1437 7 1414 202 1.63 0.99995000 0�-ACT 1010 4 194 64 0.56 0.99995000 0PT 1 NEW 1224 7 18 2 0.35 0.23605381 0FULL 602 5 505 101 0.55 0.23605381 0�-ACT 986 5 155 66 0.34 0.23605381 0Table 1: Numerical Results with Discretization j
j = 101



18 jian l. zhou and andr�e l. titsPROB n ALGO NF IT P j
kj j
�j TIME OBJECTIVE kd�kOET 1 2 NEW 13420 11 62 6 4.17 0.53824312 0.38E-16FULL 7153 6 6012 1002 10.6 0.53824312 0.97E-13�-ACT 11919 8 2748 448 7.46 0.53824312 0.48E-13OET 2 2 NEW 4207 4 23 6 1.61 0.08716106 0.15E-05FULL 3155 3 3006 1002 4.40 0.08716395 0.47E-05�-ACT 4128 4 2212 1002 3.89 0.08716768 0.31E-04OET 3 3 NEW 8920 7 50 9 3.25 0.00450552 0.25E-05FULL 6873 5 5010 1002 9.95 0.00450505 0.46E-17�-ACT 9829 7 4904 1002 12.2 0.00450505 0.17E-15OET 4 3 NEW 13886 10 71 9 4.78 0.00429567 0.12E-06FULL 11998 9 9018 1002 21.6 0.00429543 0.76E-11�-ACT 17161 12 7404 1002 21.5 0.00429543 0.32E-10OET 5 4 NEW 33441 19 158 8 12.2 0.00265008 0.27E-5FULL 27460 18 18036 1002 59.6 0.00265008 0.30E-06�-ACT 42085 25 19694 1002 57.4 0.00265008 0.16E-04OET 6 4 NEW 21345 14 131 11 8.63 0.00206998 0.16E-05FULL 18625 12 12024 1002 50.8 0.00206989 0.22E-06�-ACT 19995 13 11856 1002 52.2 0.00206996 0.35E-06OET 7 6 NEW 54584 30 355 15 27.2 0.00013273 0.32E-04FULL 60521 32 32064 1002 273. 0.00004446 0.11E-12�-ACT 127096 67 64806 1002 383. 0.00006876 0.77E-13HET-Z 1 NEW 3006 2 7 3 0.89 1.00000000 0.22E-13FULL 10062 10 10020 1002 10.9 0.99999800 0.14E-13�-ACT 7092 7 1910 316 3.35 0.99999800 0.14E-13PT 1 NEW 7337 8 22 2 1.03 0.23606791 0FULL 2991 5 2505 501 1.84 0.23606792 0�-ACT 3895 5 799 334 0.90 0.23606792 0Table 2: Numerical Results with Discretization j
j = 5015. Conclusion. An SQP-type algorithm has been proposed and analyzed forthe solution of minimax optimization problems with many more objective functionsthan variables, in particular, of �nely discretized continuous minimax problems. (Ithas been argued that SQP-type algorithms are particularly suited to certain classesof such problems.) At each iteration, a quadratic programming problem involvingonly a small set of constraints is solved and, correspondingly, only a few gradients areevaluated. Numerical results indicate that the proposed scheme is e�cient.There is no conceptual di�culty in extending the algorithm to tackle discretizedversions of continuous minimax problems where the maximization is with respect toseveral free variables ranging over arbitrary compact sets. The proposed algorithm,with appropriate modi�cations, has been implemented in an optimization-based designpackage [7] and has proven very successful in solving various types of engineering designproblems.6. Appendix: Proofs.6.1. Proof of Lemma 3.6. We denote by H 12k the symmetric positive de�nite



sqp for finely discretized minimax 19square root of Hk, by H� 12k its inverse, and we make use of the following notation:
k(!) = �(xk)� �(xk ; !)�k = X!2
k �k;!
k(!)�+k = X!2
k �k;!
k+1(!)gk(!) = H� 12k rx�(xk ; !)pk = X!2
k �k;!gk(!) = �H 12k dkp+k = X!2
k �k;!gk+1(!):It follows from (3.1), boundedness of f�kg and Assumptions 1-3 that, for someM > 1,(6:1) maxfjvkj; kp+k k; kgk+1(�!)kg �M; 8k 2 IN; 8! 2 
:We will show that (3.3) holds with(6:2) c = (1� 2~�)216M2 ;where ~� is any number in (�; 1=2).A few more lemmas are �rst established.Lemma 6.1. Let K be an in�nite index set such that fkHk+1 �Hkkg convergesto zero on K and fdkg is bounded away from zero on K. Then, given any ~� > �,�(xk+1; !) + hrx�(xk+1; !); H� 12k+1H 12k dki ��(xk+1) � �~�hdk; Hkdkiwhenever tk < 1, for k 2 K, k large enough, and for all ! 2 
 such that�(xk + tk� dk; !) > �(xk)� �tk� hdk; Hkdki:Proof. In view of Lemma 3.3(iv), ftkg converges to zero on K. Proceeding bycontradiction, suppose the claim does not hold, i.e., there exists an in�nite index setK 0 � K such that, for all k 2 K 0, tk < 1 and for some �!k 2 
(6:3) �(xk + tk� dk; �!k) > �(xk)� �tk� hdk; Hkdkiand(6:4) �(xk+1; �!k) + hrx�(xk+1; �!k); H� 12k+1H 12k dki ��(xk+1) < �~�hdk; Hkdki:In view of Lemma 3.3(i,ii) and Assumption 3, there exists an in�nite index setK 00 � K 0such that the sequences fxkg, fdkg, fHkg and f�!kg converge on K 00 respectively tosome x�, d�, H� and !�. In view of Lemma 3.3(iv), fxk+1g also converges to x�on K 00. Furthermore, since ftkg goes to zero on K 00, it follows from (6.3) and ourcontinuity assumption that !� 2 
max(x�). Also, a simple contradiction argument



20 jian l. zhou and andr�e l. titsusing Assumption 3 shows that fH� 12k+1H 12k g ! I on K. Thus taking the limit of (6.4)on K 00 yields(6:5) hrx�(x�; !�); d�i � �~�hd�; H�d�i < ��hd�; H�d�i:On the other hand, (6.3) implies that�(xk + tk� dk; �!k) > �(xk ; �!k)� �tk� hdk; Hkdki:Thus,(6:6) �(xk + tk� dk; �!k)� �(xk ; �!k)tk� > ��hdk ; Hkdki:Taking the limit of (6.6) as k !1 on K 00 yieldshrx�(x�; !�); d�i � ��hd�; H�d�i;which contradicts (6.5).As in [21, Chapter 3], using the dual of QP (xk; Hk;
k) facilitates the analysis.Lemma 6.2. Given any x 2 Rn, H = HT > 0, and 
̂ � 
, the dual quadraticprogram QP (x;H; 
̂) of QP (x;H; 
̂) is given byQP (x;H; 
̂) maximize �0@12kX!2
̂�!g(!)k2 +X!2
̂�!
(!)1A s.t. � 2 U;where 
(!) = �(x)� �(x; !), g(!) = H� 12rx�(x; !), andU = f� 2 IRj
̂j : X!2
̂�! = 1 and �! � 0 8! 2 
̂g:Proof. The dual is given bymaximize '(�) s.t. � 2 U;where ' is the dual functional, i.e.,(6:7) '(�) = mind 8<:12hd;Hdi+X!2
̂�!(�(x; !) + hrx�(x; !); di) ��(x)9=; :In view of Assumption 3, the unique minimizer d� in (6.7) is given byd� = �H�1X!2
̂�!rx�(x; !) = �H� 12 X!2
̂�!g(!)yielding X!2
̂�!hrx�(x; !); d�i = �hd�; Hd�i:



sqp for finely discretized minimax 21Therefore, '(�) = �12hd�; Hd�i �X!2
̂�!f�(x)� �(x; !)g= �0@12kX!2
̂�!g(!)k2 +X!2
̂�!
(!)1Aand the result follows.Lemma 6.3. There exists t > 0 such that�(xk + tdk; !) � �(xk)� �thdk ; Hkdkifor all k, all t 2 [0; t], and all ! 2 
k.Proof. In view of Assumption 1' and boundedness of fdkg, there exist c1 > 0 andc2 > 0 such that, for all ! 2 
, all t 2 [0; 1] and all k,�(xk + tdk; !) � �(xk ; !) + c1tkdkkand �(xk + tdk; !) � �(xk ; !) + thrx�(xk ; !); dki+ c2t2kdkk2:Thus, it follows from (2.2) applied to QP (xk; Hk;
k) that, for all ! 2 
k, all t 2 [0; 1]and all k,�(xk+tdk; !)� (1� t)�(xk ; !) + tf�(xk; !) + hrx�(xk ; !); dkig+ c2t2kdkk2� (1� t)�(xk ; !) + t max!2
kf�(xk ; !) + hrx�(xk ; !); dkig+ c2t2kdkk2= (1� t)�(xk ; !) + t X!2
k �k;!f�(xk ; !) + hrx�(xk ; !); dkig+ c2t2kdkk2� (1� t)�(xk) + t�(xk) X!2
k �k;! + t X!2
k �k;!hrx�(xk ; !); dki+ c2t2kdkk2= �(xk)� thdk ; Hkdki+ c2t2kdkk2;where, again, �k;! , ! 2 
k are the KKT multipliers associated with QP (xk; Hk;
k).Thus, in view of Assumption 3, since � 2 (0; 1=2),�(xk + tdk; !) � �(xk)� �thdk ; Hkdki+ t(�� 1)hdk ; Hkdki+ c2t2kdkk2� �(xk)� �thdk ; Hkdki+ tkdkk2f(�� 1)�1 + c2tg� �(xk)� �thdk ; Hkdki; 8t 2 [0; �t];for all ! 2 
k, with �t = (1� �)�1=c2 > 0.Proof of Lemma 3.6. Since fdkg is bounded away from zero on K, it follows fromLemma 3.3(iv) that ftkg goes to zero on K. Without loss of generality assume thattk < 1 for all k 2 K. For each k 2 K, let �!k 2 
k+1 be the value picked in Step 2 ofAlgorithm 2.1; �!k satis�es�(xk + tk� dk; �!k) > �(xk)� �tk� hdk; Hkdki:



22 jian l. zhou and andr�e l. titsIn view of Lemma 6.3, �!k 62 
k for all k 2 K. De�ne 
0k = 
bk [ f�!kg. Let v0k+1denote the optimal value of QP (xk+1; Hk+1;
0k). In view of the construction of 
k+1,
0k � 
k+1. Thus, jvk+1j � jv0k+1j. Therefore, it su�ces to prove (3.3) with the lefthand side replaced by jv0k+1j. De�ne the quadratic function in �Q(�) = 12k�gk+1(�!k) + (1� �) X!2
k �k;!gk+1(!)k2 + �
k+1(�!k)+ (1� �) X!2
k �k;!
k+1(!)= 12k�gk+1(�!k) + (1� �)p+k k2 + �
k+1(�!k) + (1� �)�+k :Let � 2 [0; 1]. Let �k;!, ! 2 
k, be the KKTmultipliers associated to QP (xk; Hk;
k).With the (dual feasible) choice ��!k = �, �! = (1� �)�k;! , for all ! 2 
bk, and �! = 0for all ! 2 
n
0k, the objective of the dual quadratic program QP (xk+1; Hk+1;
0k)takes value�Q(�). By duality, v0k+1 is the optimal objective value for bothQP (xk+1; Hk+1;
0k)and QP (xk+1; Hk+1;
0k). Thus,jv0k+1j � Q(�); 8� 2 [0; 1]:Thus, it su�ces to prove (3.3) with the left hand side replaced by min�2[0;1]Q(�).Expanding the quadratic term of Q(�) yieldsQ(�) = 12�2kgk+1(�!k)k2 + 12(1� �)2kp+k k2 + �(1� �)hgk+1(�!k); p+k i+ �
k+1(�!k) + (1� �)�+k= 12kp+k k2 + �22 kgk+1(�!k)� p+k k2 + �hgk+1(�!k); p+k i+ �
k+1(�!k)� �kp+k k2 + (1� �)�+k :(6:8)Note that hgk+1(�!k); pki = �hrx�(xk+1; �!k); H� 12k+1H 12k dki:Since ftkg converges to zero on K, tk < � for k 2 K, k large enough. Since �!k 62 
k,it follows from Step 2 in Algorithm 2.1 that Hk+1 = Hk for k 2 K, k large enough.Thus, assumptions of Lemma 6.1 are all satis�ed. Given ~� 2 (�; 1=2), in view ofLemma 6.1 with ! = �!k, there exists an integer k1 such that, for all k � k1, k 2 K,hgk+1(�!k); pki+ 
k+1(�!k) � 
k+1(�!k) + �(xk+1; �!k)��(xk+1) + ~�hdk; Hkdki:In view of the de�nition of 
k and of relationships (3.1) and (3.2), it follows thathgk+1(�!k); pki+ 
k+1(�!k) � �2~�vk; 8k 2 K; k � k1:Hence, for all k � k1, k 2 K,hgk+1(�!k); p+k i+ 
k+1(�!k) � �2~�vk � hgk+1(�!k); pk � p+k i:Also, kp+k k2 = kpk � pk + p+k k2= kpkk2 + kpk � p+k k2 � 2hpk; pk � p+k i= kpkk2 +O(kpk � p+k k):



sqp for finely discretized minimax 23On the other hand, since M > 1, inequality (6.1) implies thatkgk+1(�!k)� p+k k2 � 4M2:Substituting all these into (6.8) yields, for all k � k1, k 2 K, � 2 [0; 1],Q(�) � 12kpkk2 + 2M2�2 � �(2~�vk + kpkk2) + (1� �)�+k +O(kpk � p+k k)= 12kpkk2 + �k + 2M2�2 � �(2~�vk + kpkk2 + �k)� (1� �)(�k � �+k )+O(kpk � p+k k):In view of Lemma 6.2, since duality holds,jvkj = �vk = 12kpkk2 + �k:Thus, for all k � k1, k 2 K,Q(�) � jvkj+ 2M2�2 � �(2~�vk + jvkj)� �2kpkk2+O(j�k � �+k j) +O(kpk � p+k k)� jvkj+ 2M2�2 � �(1� 2~�)jvkj+O(j�k � �+k j) +O(kpk � p+k k):The minimum of the right hand side is achieved at ��k = 4cjvkj, with c = (1 �2~�)=16M2. Since ~� < 1=2, jvkj � M and M > 1, it follows that ��k 2 [0; 1] andthus, for all k � k1, k 2 K,min�2[0;1]Q(�) � Q(��k) � jvkj � 32M2c2jvkj2 +O(j�k � �k+ j) +O(kpk � p+k k):Now, in view of Lemma 3.3(i,iv) and Assumption 1, and since Hk+1 = Hk for k largeenough, k 2 K, f�k � �+k g and fpk � p+k g both tend to zero as k goes to in�nity,k 2 K. Thus, since vk is bounded away from zero on K (Lemma 3.3(i)), there existsa positive integer N such that, for all k � N , k 2 Kmin�2[0;1]Q(�) � jvk j � cjvkj2:Therefore (3.3) follows from the inequalityjvk+1j � jv0k+1j � min�2[0;1]Q(�):6.2. Proof of Lemma 3.8. z0 � �z20 achieves its largest value with z0 = 12� ,yielding a largest possible value for z1 given byz1 = 12� � �( 12� )2 = 14� :The mapping z 7! z � �z2



24 jian l. zhou and andr�e l. titsis monotonic increasing over [0; 12� ]. Thus, given any z0, the sequence de�ned byz1 = 14�zi+1 = zi � �z2i ; i = 1; 2; : : :is the largest of all nonnegative sequences satisfying the given inequality condition, inthe sense that given any such sequence fyig,yi � zi; i = 1; 2; : : :Let now i0 be such that zi < � for all i � i0. It follows that yi < � for all i � i0.6.3. Proof of Lemma 3.10. We �rst show that (x�;�(x�); ��) is an isolatedsolution of the nonlinear system of equations in (x; x0; �) (see (2.1))(6:9) 8>><>>: P!2
�!rx�(x; !) = 0P!2
�! = 1�!(�(x; !) � x0) = 0 8! 2 
:This will result from the Inverse Function Theorem if the Jacobian of the left-handside of this system of equations is nonsingular. To show that this is indeed the case,let (d; d0; �) 2 Rn �R�Rj
j be such that266664 r2xxL(x�; ��) 0 rx�(x�; !1) : : : rx�(x�; !`)0 0 1 : : : 1��!1rx�(x�; !1)T ���!1 �(x�; !1)��(x�)... ... . . .��!`rx�(x�; !`)T ���!` �(x�; !`)��(x�)37777526664 dd0� 37775 = 0;where !1; : : : ; !` are the elements of 
, i.e., suppose that(6:10) r2xxL(x�; ��)d+X!2
�!rx�(x�; !) = 0;(6:11) X!2
�! = 0;(6:12) ��!hrx�(x�; !); di � ��!d0 + �!(�(x�; !)��(x�)) = 0 8 ! 2 
:From (6.12) and the last line in (2.1) it follows that�! = 0 8! s.t. �(x�; !) < �(x�):(6:13)Together with (6.12) this implies that��!(hrx�(x�; !); di � d0) = 0 8! 2 




sqp for finely discretized minimax 25and, in view of the strict complementarity assumptionhrx�(x�; !); di = d0 8! 2 
max(x�):From the �rst two lines in (2.1), it follows that d0 = 0, thushrx�(x�; !); di = 0 8! 2 
max(x�):(6:14)Performing the inner product with d of both sides of (6.10) and using (6.13) and (6.14)yields hd;r2xxL(x�; ��)di = 0:In view of Assumption 5, this together with (6.14) implies that d = 0. Substitutingthis in (6.10) and using (6.11)-(6.13) and Assumption 4, we conclude that �! = 0 forall ! 2 
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