Please upload your work as a single PDF file to ELMS (under the "Assignments" tab)

- Submissions on paper or by email will not be accepted.
- Please do not submit as multiple separate files (pictures of individual pages). Such submissions are difficult to grade and will not be accepted.
- All problems will be graded, max score 105 points.

Problem 1:

(15 points)
We are considering binomial intersection graphs $G(n, m, p)$ from Lec. 8 .
(a) Show that if $p=\omega(n) /(n \sqrt{m})$, where $\omega(n) \rightarrow \infty$, then w.h.p. the graph is nonempty, i.e., $|E| \geq 1$.
(b) Take $p=\left(\frac{2 \log n+a(n)}{m}\right)^{1 / 2}$. What is the condition for $a(n)$ that would imply that w.h.p. the graph is not complete? Please be precise in your answer.

Problem 2:

(20 points)
A random walk $\left(X_{t}\right)_{t \geq 0}$ on a graph $G=(V, E)$ moves from a vertex to one of its neighbors, chosen uniformly. Starting from $X_{0}=u$, let $T_{u}=\min \left(t: \forall v \in V, X_{s}=v\right.$ for some $\left.s \leq t\right)$ be the first time all $v \in V$ have been visited. Denote $\tau(G):=\max _{u \in V} \mathrm{E} T_{u}$.
(a) Suppose that G is a simple cycle on n vertices, $V=\{0,1, \ldots, n-1\}$, and $i \sim j$ iff $|i-j|=1(\bmod n)$. Compute $\tau(G)$.
(b) Let G be a line graph on n vertices, i.e., $V=\{1,2, \ldots, n\}$, and $i \sim j$ iff $|i-j|=1$. Compute $\tau(G)$.

Problem 3:

(20 points)
Let $t_{\text {mix }}^{(\infty)}$ be the mixing time in the ℓ_{∞} norm, defined in [LPW17], Sec.4.7. Consider a lazy random walk on the complete graph on n vertices.
(a) Show that for this random walk, $t_{\text {mix }}^{(\infty)}=\Theta(\log n)$.
(b) Show that for the same random walk, the separation distance $s(2) \leq 1 / 4$ (The separation distance is defined in Lec.19).

Problem 4: Expander mixing lemma

(25 points)

Let $f: E \rightarrow \mathbb{R}$ be a function on the state space E of a reversible Markov chain (i.e., an $|E|$-dimensional real vector). Denote by P the transition kernel of the chain. Define a scalar product $\langle f, g\rangle_{\pi}:=\sum_{x \in E} f(x) g(x) \pi(x)$, where π is the stationary distribution, so $\mathrm{E} f=\langle f, 1\rangle_{\pi}$. Note that

$$
\operatorname{Var}(f)=\langle f, f\rangle_{\pi}-\langle f, 1\rangle_{\pi}^{2}
$$

(a) Let $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{|E|}$ be the eigenvalues of P, and let $\gamma=1-\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{|E|}\right|\right\}=1-\max \left\{|\lambda|: \lambda \neq \lambda_{1}\right\}$. Show that for any f

$$
\operatorname{Var}\left(P^{t} f\right) \leq(1-\gamma)^{2 t} \operatorname{Var}(f)
$$

(b) Show that the covariance

$$
\operatorname{Cov}\left(P^{t} f, g\right) \leq(1-\gamma)^{t} \sqrt{\operatorname{Var}(f) \operatorname{Var}(g)}
$$

(c) Let $G(V, E)$ be a d-regular graph with $|V|=n$ and let β be the second largest eigenvalue of the adjacency matrix of G. For a pair of (not necessarily disjoint) subsets $S, T \subset V$ let

$$
\mathcal{E}(S, T)=\{(x, y) \in S \times T: x \text { and } y \text { are adjacent in } G\}
$$

be the edge set of the subgraph induced by $S \cup T$. Prove that

$$
\begin{equation*}
\left||\mathcal{E}(S, T)|-\frac{d|S||T|}{n}\right| \leq \beta \sqrt{|S||T|} \tag{1}
\end{equation*}
$$

Hint: Take $f=\mathbb{1}_{S}, g=\mathbb{1}_{T}$ in (b).
Notes: (1) There are several different proofs of inequality (1). You are required to follow the steps outlined above. Submitting a different proof will result in no credit.

Problem 5:

(25 points)
In Lecture 26 we defined the degree- k part of a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ as $f=k=\sum_{|S|=k} \widehat{f}(S) \chi_{S}$ and the k-th Fourier weight of f as $W^{k}(f)=\sum_{|S|=k} \widehat{f}(S)^{2}$. Let $D_{i} f$ be the i th derivative operator.
(a) Show that $\left\langle f^{=k}, f^{=l}\right\rangle=W^{k}(f) \mathbb{1}_{\{k=l\}}$, where $\langle f, g\rangle:=2^{-n} \sum_{x \in\{-1,1\}^{n}} f(x) g(x)$.

In parts (b)-(e) the function f is assumed Boolean.
(b) Show that $W^{1}(f)=1$ implies that $f= \pm \chi_{i}$ for some $i \in[n]$.
(c) Prove that if $W^{0}(f)+W^{1}(f)=1$, then f depends on at most one coordinate x_{i} of its argument.
(d) Suppose that $\mathrm{E}[f]=0$ and let $I_{i}(f)$ denote the influence of the i th coordinate (Lec.25). Prove that

$$
\max _{1 \leq i \leq n} I_{i}(f) \geq \frac{1}{n}
$$

(use the Poincaré inequality, which states that $\operatorname{Var}(f) \leq I(f)$).
(e) For a given $i \in[n]$ show that $|\widehat{f}(i)| \leq I_{i}(f)$ with equality if and only if the following condition holds: The sign of $\left(D_{i} f\right)(x)$ does not depend on x, i.e., either $\left(D_{i} f\right)(x) \geq 0$ for all x or $\left(D_{i} f\right)(x) \leq 0$ for all x.

