Please submit your work as a single PDF file by email to abarg@umd.edu

- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points. A subset of problems will be graded.

Problem 1. Exercise 4.8 in the book by Guruswami, Rudra, and Sudan, link on the class page.

Problem 2. Exercise 6.7 in the book; please use the case \(q = 2 \) in the statement of the exercise.

Problem 3. This problem discusses a combinatorial approach to the MacWilliams theorem. Below \(C \) is a linear \([n, k]\) code with weight distribution \(A_i, i = 0, \ldots, n \) and \(C^\perp[n, n-k] \) is its dual code, \(G \) is the generator matrix of \(C \) and \(H \) is its parity-check matrix.

(a) Let \(E \subset \{1, 2, \ldots, n\} \). Let \(C(E) \) be a linear code obtained by taking all codewords of \(C \) of the form \(c = (c_i, i = 1, \ldots, n) \), where \(c_i = 0 \) for all \(i \in E^c \) (zeros outside \(E \)). Show that for all \(w = 0, 1, \ldots, n \)
\[
\sum_{i=0}^{n} A_i \binom{n-i}{n-w} = \sum_{E: |E| = w} |C(E)|,
\]
where on the right we sum the cardinalities of the codes \(C(E) \) over all \(w \)-subsets of \(\{1, \ldots, n\} \). Hint: \(A_i \) is the number of codewords of weight \(i \), and these codewords therefore contain \(n - i \) zeros. This relates these codewords to the codes \(C(E) \) where \(E \) is a subset of the complement of the support of the codeword.

(b) Let \(H(E) \) be the restriction of \(H \) to the columns with indices in the set \(E \). Letting \(|E| = w \), prove that \(\text{dim}(C(E)) = w - \text{rk}(H(E)) \), where \(\text{rk}(\cdot) \) is the rank of the argument (mod 2).

(c) Prove that \(w - \text{rk}(H(E)) = k - \text{rk}(G(E^c)) \) for any \(E \subset \{1, 2, \ldots, n\} \).

(d)* Prove that (a)-(c) imply that
\[
\sum_{i=0}^{n-u} A_i^+ \binom{n-i}{u} = 2^{n-k-u} \sum_{i=0}^{u} A_i \binom{n-i}{n-u}.
\]

Problem 4. (a) (PARITY-CHECK ENSEMBLE.) Let \(H \) be a binary \((n-k) \times n\) matrix whose elements are independent Bernoulli random variables with \(\Pr(0) = \Pr(1) = 1/2 \). Consider a linear code \(D \) for which \(H \) is a parity-check matrix. Let \(A_w \) be a random number of vectors of Hamming weight \(w \) in \(D \).

(b1) Prove that for any nonzero vector \(x \in \{0, 1\}^n \) the probability \(P(Hx^t = 0) = 1/2^{n-k} \).

(b2) Prove that \(EA_w = 2^{k-n} \binom{n}{w} \), \(w \geq 1 \).

(a) (GENERATOR MATRIX ENSEMBLE.) Let \(G \) be a binary \(k \times n \) matrix whose elements are independent Bernoulli random variables with \(\Pr(0) = \Pr(1) = 1/2 \). Consider a linear code \(C \) spanned by the rows of \(G \) (its dimension may be \(k \) or less). Let \(A_w \) be a random number of vectors of Hamming weight \(w \) in \(C \). Prove the following three equalities
\[
\begin{align*}
(1) \quad EA_0 &= 1 + \frac{2^k - 1}{2^n}; \\
(2) \quad EA_w &= \binom{n}{w} \frac{2^k - 1}{2^n}, \quad w \geq 1 \\
(3) \quad EA_w^2 &= EA_w + \frac{(2^k - 1)(2^k - 2)}{2^{2n}} \binom{n}{w}^2.
\end{align*}
\]