
Effective version of the Shannon theorem: Polar codes1

A. Barg

0. Introduction. We discuss a constructive sequence of codes that attains capacity of binary-input symmetric
memoryless channels. The main result is due to E. Arikan [1].

Let W be a binary-input discrete memoryless channel W : X → Y, X = {0, 1}. Define

I(W ) =
1

2

∑
x,y

W (y|x) log W (y|x)
1
2W (y|0) + 1

2W (y|1)
.

If W is (weakly) symmetric, then I(W ) equals its capacity, otherwise it is less than capacity2.
Definition: Let M be a finite set of cardinality M = 2NR. A mapping f : M → XN defines a binary

error-correcting code C = {f(1), f(2), . . . , f(M)}. The code is called linear if f is a linear map defined on
{0, 1}NR.

Let g : Yn → M be a decoding map. Define the error probability

Pe(C) = max
1≤i≤M

Pr{g(f(i)) ̸= i}.

A sequence of codes Cn = fn(Mn), n ≥ 1 is said to attain the transmission rate I(W ) on the channel W if
for any ε > 0 there exists a sufficiently large n0 such that for all n ≥ n0 both R > I(W )−ε and Pe(Cn) ≤ ε.

Below we construct a sequence of linear binary codes Cn, n ≥ 1 of length N = 2n that attains the rate
I(W ) of the channel W . For symmetric binary-input channels these codes are capacity-achieving.

1. Data transformation. Consider transmitting binary digits u1, u2 in two uses of the channel W. The
combined channel can be written as W 2(y21 |u2

1), where y21 = (y1, y2), u
2
1 = (u1, u2). Of course,

W 2(y21 |u2
1) = W (y1|u1)W (y2|u2),

and the capacity is I(W 2) = 2I(W ), so nothing interesting happens. Let us transform the input bits so that
the two uses of the channel, while still carrying 2I(W ) bits, lead to outputs of unequal reliability. Toward
this end, let us send

(1) x1 = u1 ⊕ u2 and x2 = u2

in the first and the second channel uses, respectively. In other words, consider the channel

Data combining, n = 1

W2(y
2
1 |u2

1) = W (y1|u1⊕u2)W (y2|u2)

x1 y1
W

u1

W
u x2 2 y2

The capacity of W2 is still I(Y 2
1 |U2

1 ) because (U1, U2) ↔ (X1, X2) is a one-to-one transformation. Using
the chain rule we obtain

(2) 2I(W ) = I(U2
1 ;Y

2
1 ) = I(U1;Y

2
1 ) + I(U2;Y

2
1 |U1) = I(U1;Y

2
1 ) + I(U2;Y

2
1 , U1),

1These notes were prepared for the course ENEE627 (Information Theory) in Spring semester 2012 and were taught in 3 class
sessions.

2The above definition uses the prior distribution PX(0) = PX(1) = 1/2. This assumption is used throughout these notes.
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the last step because U1 and U2 are independent (here Y 2
1 = (Y1, Y2), same for U2

1 ). Moreover,

(3) I(U2;Y
2
1 , U1) = H(U2)−H(U2|Y 2

1 , U1) ≥ H(U2)−H(U2|Y2) = I(W ).

From (2), (3) we obtain

(4) I(U1;Y
2
1 ) ≤ I(W ) ≤ I(U2;Y

2
1 , U1).

2. Virtual channels. The mutual information quantities in (2) give rise to conditional distributions that we
denote W+(y21 , u1|u2) and W−(y21 |u1). They are well defined once PU and W (y|x) are defined. We will
call W+ and W− “virtual channels” (or simply channels). Their input alphabet is X = {0, 1} and the output
alphabets are Y+ = Y2 × {0, 1} and Y− = Y × {0, 1}, respectively.

Lemma 1. We have

W+(y21 , u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2)

W−(y21 |u1) =
1

2

1∑
u2=0

W (y1|u1 ⊕ u2)W (y2|u2).

Proof We have

W+(y21 , u1|u2) =
PY1Y2U1U2(y

2
1 , u

2
1)

PU (u2)
= 2W2(y

2
1 |u1 ⊕ u2, u2)PU1U2(u

2
1) =

1

2
W (y1|u1 ⊕ u2)W (y2|u2)

and

W−(y21 |u1) =
PY1Y2U (y

2
1 , u1)

PU (u1)
= 2

∑
u2

1

2
PY1Y2U1|U2

(y21 , u1|u2) =
1

2

1∑
u2=0

W (y1|u1 ⊕ u2)W (y2|u2).

Lemma 2. I(W+) ≥ I(W ) ≥ I(W−) with equality iff I(W ) equals 0 or 1.

Proof : The first part of the claim is established in (4). By (3), equality is attained if I(U2;Y1, U1|Y2) =
H(U2|Y2)−H(U2|Y 2

1 , U1) = 0. One can show that this equality is equivalent to

W (y2|0)W (y2|1)[W (y1|0)−W (y1|1)] = 0,

i.e., either W (y2|0)W (y2|1) = 0 for all y2 ∈ Y (capacity 1) or W (y1|0) = W (y1|1) for all y1 ∈ Y (capacity
0).

Note that I(W+) + I(W−) = 2I(W ). Therefore, if we iterate transformation (1), we can hope that some
of the channels become very good, and potentially noiseless. Transformation (1) can be written as

(5) (x1, x2) = (u1, u2)H2, where H2 ≜
(
1 0
1 1

)
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and the operations are modulo 2. Iterating this construction one more time, we obtain the following scheme
(the circles mean addition mod 2):

Data combining, n = 2

(6) x4
1 = u4

1


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


2y

y1

y3

4

x2

x3

x1

u2

u1

u3

u4

W

W

W

W
x y4

One more step produces a scheme for sending u8
1 as shown below.

Data combining, n = 3

(7) x8
1 = u8

1



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



2y

y1

y3

4

x2

x3

x1

x5

x6

x7

y5

y7

8

u1

u2

u3

u4

u5

u6

u7

u8

W

W

W

W
y

W

W

W

W
x y4

x

y6

8

We denote the matrix of the linear transformation uN
1 → xN

1 by HN and note that3 HN = H⊗n
2 , where

N = 2n.

General setting: Let WN (yN1 |xN
1 ) =

∏N
i=1 W (yi|xi) be the N -th degree extension of the original chan-

nel W . After n iterations of the type (6)-(7), N = 2n, we obtain a channel

WN (yN1 |uN
1 ) ≜ WN (yN1 |uN

1 HN ).

Now let us isolate virtual channels for the bits u1, . . . uN .

3 (H2)⊗2 = H2⊗H2 is defined as the 4×4 matrix of the form
(h11H2 h12H2

h21H2 h22H2

)
where hij are the elements of H2. Generally,

HN = H2 ⊗HN/2, where N = 2n, n ≥ 2.
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Lemma 3. Let uN
i+1 ≜ (ui+1, . . . , uN ), then

(8) P (yN1 , ui−1
1 |ui) =

1

2N−1

∑
uN
i+1∈XN−i

WN (yN1 |uN
1 ).

Proof : Similar to Lemma 1. We have

P (yN1 , ui−1
1 |ui) =

P (yN1 , ui
1)

P (ui)
= 2

∑
uN
i+1∈XN−i

P (yN1 , ui
1|uN

i+1)2
−(N−i)

(the last equality is the total probability formula)

= 2
∑

uN
i+1∈XN−i

2−(N−i)−iPY N
1 |XN

1
(yN1 |uN

1 ) =
1

2N−1

∑
uN
i+1∈XN−i

WN (yN1 |uN
1 )

where on the last line we used the notation WN introduced after (8).

We also use alternative notation for these channels, which we shall now develop. Note that the channels
W+ and W− above are binary-input, and so the operations + and − apply to them. In the next step of the
iteration we obtain the following expressions.

Lemma 4.

W++(y41 , u
3
1|u4) =

1

2
W+(y1, y3, u1 ⊕ u2|u3 ⊕ u4)W

+(y2, y4, u2|u4)(9)

W+−(y41 , u
2
1|u3) =

1

2

∑
u4

W+(y1, y3, u1 ⊕ u2|u3 ⊕ u4)W
+(y2, y4, u2|u4)(10)

W−+(y41 , u1|u2) =
1

2
W−(y1, y3|u1 ⊕ u2)W

−(y2, y4|u2)(11)

W−−(y41 |u1) =
1

2

∑
u2

W−(y1, y3|u1 ⊕ u2)W
−(y2, y4|u2).(12)

Proof : For instance, let us derive the expression for W++(y41 , u
3
1|u4). Using (6) we obtain

W++(y41 , u
3
1|u4) =

1

2

(1
2
W (y1|u1 ⊕ u2 ⊕ u3 ⊕ u4)W (y3|u3 ⊕ u4)

)(1
2
W (y2|u2 ⊕ u4)W (y4|u4)

)
By definition of W+ the first of the two bracketed factors equals W+(y1, y3, u1⊕u2|u3⊕u4) (since u1, u2, u3

are fixed) and the second gives W+(y2, y4, u2|u4). Therefore, we obtain the claimed expression (9). Likewise

W−−(y41 |u1) =
1

8

∑
u2

∑
u4

W (y2|u2 ⊕ u4)W (y4|u4)
∑
u3

W (y1|u1 ⊕ u2 ⊕ u3 ⊕ u4)W (y3|u3 ⊕ u4).

Notice that for a fixed u4, the sum on u3 fits the definition of W− in which u3 ⊕ u4 is the bit value that
is “averaged out.” Then the probability W−(y1, y3|u1 ⊕ u2) is taken outside the sum on u4, which then
becomes W−(y2, y4|u2).

Example: Let W : {0, 1} → {0, 1, ?} be a BEC(p) (the binary erasure channel). Then I(W ) = 1 − p. In
this case I(W+) = 1 − p2 (much better than 1 − p) and I(W−) = (1 − p)2 (much worse). This can be
computed directly and also follows from Lemma 6 below.
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Suppose that we begin with BEC(0.5). Capacities of the channels evolve as follows:
u1 u2 u3 u4 u5 u6 u7 u8

n = 1 0.25 0.75
n = 2 0.0625 0.4375 0.5625 0.9375
n = 3 0.00390625 0.121094 0.191406 0.683594 0.316406 0.808594 0.878906 0.996094

Here on the third line we list channels W−−−,W−−+, . . . ,W+++. Capacities typset in bold corresponds
to the channels that are “good” and that should be used to transmit 4 bits of data. Thus, in this scheme we
transmit 4 bits as u4, u6, u7, u8. As n → ∞, the proportion of good channels approaches I(W ) = 0.5. Note
that one shouldn’t assume that the more + signs the channel gets, the better it is. This may be misleading
(except for the all-(+) or all-(−) channels). The question of locating the good indices among N = 2n indices
is a separate issue.

3. Channel evolution. After n steps of the above recursion we obtain a collection of N = 2n channels

Wn = {WB( · | ·) | B ∈ {+,−}n}

Let us equip Wn with a uniform probability distribution, namely Pr(WB) = 1
2n for any B. By sampling

from Wn we obtain a “random channel” Wn. Denote its capacity by In := I(Wn). In this part we establish
convergence properties of the random process In.

Theorem 5. The sequence of random variables In converges almost surely to a Bernoulli 0-1-valued random
variable I∞, and P (I∞ = 1) = I(W ), P (I∞ = 0) = 1− I(W ).

This theorem implies that in the “polarization limit,” the channels for bits u1, . . . , uN become either
noiseless (with probability I(W )) or fully random (with probability 1 − I(W )). The polarization effect
defines a subset AN (W ) ⊂ {1, 2, . . . , N} of coordinates where the data is carried over the channel with no
errors, and the number of these coordinates is |AN (W )| = I(W )N. Thus, for N → ∞ and any R < I(W )
we can transmit RN bits over W with no errors.

The previous paragraph describes the limiting behavior, i.e., the case N = ∞. In reality, we have N = 2n,
and for large n the capacity of each “good” virtual channel is close to 1, but not 1, so there will be some error
rate. Nevertheless, we can transmit RN bits with low error probability, and by choosing sufficiently large
n, we can make R to be arbitrarily close to I(W ). To prove Theorem 5 we introduce the Bhattacharyya
parameter of the channel

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1)

For instance, if the channel is BEC(p), we obtain Z(W ) = p while for BSC(p) we get Z(W ) = 2
√
p(1− p).

We have 0 ≤ Z(W ) ≤ 1, where the left side is obvious, and the right follows by the Cauchy-Schwarz
inequality4. If Z(W ) = 0, then W (y|0)W (y|1) = 0 for all y ∈ Y , so I(W ) = 1, and if Z(W ) = 1, then

4The Cauchy-Schwarz inequality states that any vectors a, b ∈ Rn satisfy

n∑
i=1

aibi ≤
√∑

i

a2i

√∑
i

b2i

with equality iff a = αb for some α ∈ R. Now take ay =
√

W (y|0), by =
√

W (y|1), y ∈ Y and use the fact that
∑

y W (y|i) =

1, i = 0, 1.
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(from the equality condition in Cauchy-Schwarz) W (y|0) = W (y|1), y ∈ Y, so I(W ) = 0. Therefore, if
Z(W ) is large then I(W ) is small, and vice versa. This is made formal in the following lemma.

Example for Theorem 5: BEC(0.5)

0.2 0.4 0.6 0.8 1.0

i

N

0.2

0.4

0.6

0.8

1.0

IHWN
IiML

FIGURE 1. Polarization of virtual channels for the BEC case. On the x-axis we plot the relative
channel index, on the y-axis the channel capacity. For a given n we compute capacities of the N

channels WB
N , sort them in increasing order, and joint the points by straight lines. The resulting

curves are plotted in the figure. We show results of n iterations, n = 4, 5, . . . , 15. The dotted (step)
line represents the channel distribution for n = ∞.

Lemma 6. For any binary-input DMC W

I(W ) ≥ log
2

1 + Z(W )
(13)

I(W ) + Z(W ) ≥ 1(14)

I(W )2 + Z(W )2 ≤ 1(15)

Equality in (14) holds if and only if W is a BEC5.

5A channel W : {0, 1} → Y is called a BEC if for any output symbol y ∈ Y either W (y|1) = W (y|0) or W (y|1)W (y|0) = 0.
In particular, if |Y| = 2, this gives the usual definition of a BEC.
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Proof : Inequality (13) follows from (14), but the proof of (14) is not immediate. Let us prove (13).

I(X;Y ) =
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y) log
PXY (x, y)
1
2PY (y)

= −2
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y) log

√
1
2PY (y)

PXY (x, y)

Jensen
≥ −2

∑
y∈Y

PY (y) log

[∑
x∈X

PX|Y (x|y)

√
1
2PY (y)

PXY (x, y)

]
Jensen
≥ − log

∑
y∈Y

PY (y)

[∑
x∈X

PX|Y (x|y)

√
1
2PY (y)

PXY (x, y)

]2
Taking the term PY (y) inside, we obtain for the term in the brackets∑

x∈X

PX|Y (x|y)

√
1
2PY (y)

PX|Y (x|y)
=

∑
x

√
1

2
PXY (x, y) =

∑
x

1

2

√
W (y|x)

and ∑
y

(1
2

1∑
x=0

√
W (y|x)

)2

=
1

4

{∑
x

∑
y

W (y|x) + 2
∑
y

√
W (y|0)W (y|1)

}
=

1

2
(1 + Z(W ))

This proves (13). The proof of inequality (15) is similar, but more technically involved; see [1].

4. Martingales. We briefly recall the basic convergence results for martingales. The case that interests us is
related to random processes that describe parameters of the random channels.

Let (Ω,F , P ) be a probability space, and let F1 be a σ-subalgebra of F . Let X be F-measurable random
variable. The conditional expectation of X given F1 is an F1-measurable random variable Y such that for
any A ∈ F1 ∫

A

XdP =

∫
A

Y dP.

A collection of σ-subalgebras Fn ⊂ F , n = 1, 2, . . . is called a filtration if Fm ⊆ Fn for all m ≤ n. A
family of random variables Xn, n ≥ 1 is called adapted to a filtration Fn if Xn is Fn-measurable for each
n ≥ 1. A family (Xn,Fn)n≥1 is called a martingale if the process Xn is adapted to the filtration Fn, Xn is
absolutely integrable for all n (i.e., E|Xn| < ∞), and

Xm
a.s.
= E(Xn|Fm) for m ≤ n.

If = in this equation is replaced by ≥, then the sequence (Xn,Fn)n,≥1 is called a supermartingale. If you
do not know what measurability and integration mean, do not worry because our use of these results will not
go far beyond the following elementary example.

Example: Suppose that a fair coin is tossed 3 times, and let Ω = {HHH,HHT, . . . , TTT} be the set of
the outcomes. Consider the set of successively refined partitions of Ω :

S1 = {H ∗ ∗, T ∗ ∗}, S2 = {HH∗,HT∗, TH∗, TT∗}, S3 = {all one-element subsets}.

Here H ∗ ∗ refers to the four outcomes that start with an H, etc. These partitions define σ-algebras of subsets
F1,F2,F3, and we define F0 = {∅,Ω}. Define random variables X1, X2, X3, where Xi bets $1 on the
outcome of the ith toss, i = 1, 2, 3 (i.e., PXi(+1) = PXi(−1) = 1/2).
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Now let Yi =
∑i

j=1 Xj , i = 1, 2, 3. This sequence is adapted to the filtration F0 = {∅,Ω) ⊂ F1 ⊂ F2 ⊂
F3 (for instance, Y2 is F2-measurable because it is constant on the blocks of the partition S2). Furthermore,
after the first toss, Y1 is known, and E(Y2|F1) = Y1 + (1/2(+1) + 1/2(−1)) = Y1. Thus, the sequence
(Yi,Fi), i = 1, 2, 3 forms a martingale.

This example highlights the idea behind the notion of the martingale which was conceived as an abstraction
of a fair game. Suppose that we gamble by making bets on the outcomes of an experiment. Knowing the
outcome of the first toss does not improve or hinder our chances to win, namely, E(X2 − X1|F1) = 0.
Supermartingales model games that are apriori unfavorable since in this case E(X2 −X1|F1) ≤ 0.

The main result about martingales is given by the following theorem.

Theorem 7. (Doob) Let (Xn,Fn)n≥1 be a bounded (super)martingale (i.e., |Xn| < c for some constant c
and all n). Then

lim
n→∞

Xn = Y

almost surely, where Y is a random variable. Moreover, EY exists, and E|Xn − Y | → 0.

5. Completing the proof of Theorem 5.

Lemma 8.

I(W+) + I(W−) = 2I(W )(16)

Z(W+) = Z(W )2(17)

Z(W ) ≤ Z(W−) ≤ 2Z(W )− Z(W )2(18)

Equality on the right-hand side of (18) is attained if and only if W is a BEC.

Proof: (16) was proved in (2). Relations (17) and (18) are proved by a direct calculation. For instance, let
us prove (17). We have

Z(W+) =
∑
y2
1 ,u1

√
W+(y21 , u1|0)W+(y21 , u1|1)

=
∑
y2
1 ,u1

1

2

√
W (y1|u1)W (y2|0)W (y1|u1 ⊕ 1)W (y2|1)

=
∑
u1

1

2

∑
y2

√
W (y1|u1)W (y2|0)

∑
y1

√
W (y1|u1 ⊕ 1)W (y2|1)

= Z(W )2.

Remark: As a consequence of this lemma, we also have

Z(W+) + Z(W−) ≤ 2Z(W )

I(W ) ≤ I(W+) ≤ 2I(W )− I(W )2

I(W )2 ≤ I(W−) ≤ I(W )

These relations are not used below.

Let us tie the evolution of channels to the context of the previous section. Let Ω = {ω|ω ∈ {+,−}∗} be
the set of semi-infinite binary sequences. We may view Ω as a rooted binary tree where the nodes of the nth
level corresponds to the channels of the form W b, b = (b1, . . . , bn), where bi ∈ {+,−} for all i. Define a set
of increasingly refined partitions of Ω into subsets of the form S(b1, . . . , bn) = {ω ∈ Ω | ω1 = b1, . . . , ωn =
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bn}, n ≥ 0. Put P (S(b1, . . . , bn)) = 2−n. Put F0 = {∅,Ω} and define a filtration F0 ⊂ F1 ⊂ · · · ⊂ F ,
where Fn, n ≥ 1 is generated by the sets S(b1, . . . , bn).

Let Bi, i = 1, 2, . . . be i.i.d. {+,−}-valued random variables with P (B1 = +) = P (B1 = −) = 1/2.
The random channel emerging at time n will be denoted by WB , where B = (B1, B2, . . . , Bn), Thus,
P (WB) = 2−n for all realizations of B. Let Wn = WB and let In = I(WB), Zn = Z(WB) be random
processes. The sequences In, Zn are adapted to the above filtration. Note that this setting formalizes the
discussion that preceded Theorem 5.

Proposition 9. The sequence (In,Fn)n≥0 forms a bounded martingale. The sequence (Zn,Fn)n≥0 forms a
bounded supermartingale.

Proof : We have

E(In+1|Fn) =
1

2
(I(WB1,...,Bn,+) + I(WB1,...,Bn,−)) = In,

where the second equality follows from (16). Therefore (In,Fn)n≥1 is a martingale. It is bounded because
In ∈ [0, 1] for all n.

Similarly,

E(Zn+1|Fn) =
1

2
(Z(WB1,...,Bn,+) + Z(WB1,...,Bn,−)) ≤ Zn,

where the inequality follows from (17)-(18). Therefore (In,Fn)n≥1 is a supermartingale. It is bounded
because Zn ∈ [0, 1] for all n.

Now let us complete the proof of Theorem 5. By Doob’s theorem, the sequence Zn converges a.s. to a
random variable Z∞. A refinement of this theorem implies that E|Zn − Z∞| → 0, and therefore, E|Zn −
Zn+1| → 0. However, Zn+1 = Z2

n with probability 1/2, so E|Zn+1 −Zn| ≥ 1/2E(Zn(1−Zn)) ≥ 0. Thus,
limn→∞ E(Zn(1− Zn)) = 0, and so E(Z∞(1− Z∞)) = 0. This implies that Z∞ = 0 or 1 a.s.6

Again using Doob’s theorem, we claim that In
a.s.→ I∞ and EI∞ = I0. But (13) and (15) imply that

I∞ ∈ {0, 1} a.s., and so P (I∞ = 1) = I(W ). This completes the proof of Theorem 5.

6. Code construction. We have shown that by iterating the basic data transformation we can transmit close
to an NI(W ) proportion of bits almost noiselessly. Let us turn this observation into a code construction.

Let HN = H⊗n
2 be the N ×N matrix of the form (6), (7). Let AN be the set of indices that correspond

to channels of capacity close to 1. Let GN be an NI(W )×N formed of the rows with indices in AN .

Definition: A polar code is a linear map f : {0, 1}NR → {0, 1}N given by u 7→ x = uGN .

We represent messages as binary strings of nR bits. A message uRN
1 is encoded as xN

1 and transmitted in
N uses of the (physical) channel W .

Example: To continue with the example of BEC with p = 0.5 (see p.4), we encode 4 bits, call them
u4, u6, u7, u8 using the scheme in (7). Namely, in the following figure

6This means that there exist disjoint subsets Ω0,Ω1 ⊂ Ω such that P (Ω0 ∪ Ω1) = 1 and limn→∞ Zn(ω) = i for ω ∈ Ωi, i =
0, 1.
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we set the bits u1, u2, u3, u5 to zero (or any other set of values known to both the sender and the receiver)
and send the bits x1, . . . , x8 over the channel.

The decoder mapping utilizes the distributions (8) associated with the virtual channels W (yN1 , ui−1
1 |ui), i =

1, . . . , N which assume that we decode N bits one by one. Since in reality we only have RN bits, the re-
maining N(1−R) bits are set to 0 by the decoder.

The successive cancellation decoder is defined inductively as follows: for i = 1, 2, . . . , N put

ûi =

{
argmaxz∈{0,1} W (yN1 , ûi−1

1 |z) if i ∈ AN

0 if i ∈ Ac
N .

The decoder takes the best decision for the ith bit based on the estimate of the bits 1 to i − 1. Note that
some of the “future” indices may be in the set Ac

N so the corresponding bits are known to the decoder which
could use this additional information. The above definition disregards this knowledge. resulting in an easily
implementable procedure.

Theorem 10. Let PN (W ) = Pr(ûN
1 ̸= uN

1 ) be the error probability of decoding for the length-N polar
code. Then

PN (W ) ≤
∑
i∈AN

Z(W
(i)
M ).

Proof: see homework 5.
An additional argument shows that PN (W ) ≤ O(2−Nβ

), where β is any number in (0, 1/2).
Remark: One issue about the overall proof remains unresolved. Namely, we have been assuming that

all the rv’s Ui, 1 ≤ i ≤ N are uniform {0, 1}-valued. However, above the bits that correspond to very
noisy channels have been set to 0, violating this assumption. An averaging argument in [1] shows that there
exists an assignment of bits such that PN is bounded above as in the last theorem. Moreover, for symmetric
channels any assignment of bits is as good as any other asignment. This shows that setting Ui = 0, i ∈ Ac

n

does not interfere with the proof.

7. Conclusion. This concludes the proof of the fact that polar codes with successive cancellation decoding
achieve capacity of binary-input symmetric channels. The complexity of encoding and decoding with polar
codes can be shown to grow as O(N logN), where N is the code length. Other known results for polar
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codes include estimates of the error probability of decoding, extension of the above arguments to nonbinary
alphabets X , using polarization to achieve limits of noisy data compression (source coding), algorithms for
finding the set of good indices AN , and replacing the basic transform H2 with matrices of larger dimensions,
which gives faster decline of the error rate as a function of N .

Finally, we remark that the code construction of [1] relies on matrices that are slightly different from
HN = H⊗n

2 . The additional layer results in easier implementation of the codes, while the approach in these
notes is more convenient for classroom use. The basic convergence results are not affected by this change.
At the same time, some of the formulas in these notes, notably (9)-(12), do not match the corresponding
results in [1]. The data combining proposed there (shown below for our running example) permits a recursive
implementation similar to the Cooley-Tuckey algorithm for fast DFT and leads to the complexity estimates
mentioned in the previous paragraph.
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