- Please submit your work as a single PDF file to ELMS/Canvas Assignments by 10/15, 4pm US Eastern time.
- Each problem is 10 points. Max score=50 points
- Your answers should be justified. Giving just the answer may result in no credit for the problem.
- Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1. Let X, Y be real-valued RVs on a probability space (Ω, \mathcal{F}, P), which may or may not be dependent. Show that for any Borel set $B \in \mathcal{B}(\mathbb{R})$

$$
|P(X \in B)-P(Y \in B)| \leq P(X \neq Y)
$$

(this is a basic Venn diagram-type argument).

Problem 2. (a) Let $Y \sim \operatorname{Unif}[0,1]$ be an RV uniformly distributed on the unit segment $[0,1]$. Define the RVs $X_{n}=\sqrt{n} \mathbb{1}_{\{Y \leq 1 / n\}}, n=1,2, \ldots$, where $\mathbb{1}_{\{\cdot\}}$ is the indicator of the event in the subscript.
Does the sequence $\left(X_{n}\right)_{n \geq 1}$ converge in probability? almost surely? in the mean-square sense?
(b) Now let $Y_{n} \sim \operatorname{Unif}[0,1], n=1,2, \ldots$, be i.i.d. RVs and let $X_{n}=\sqrt{n} \mathbb{1}_{\left\{Y_{n} \leq 1 / n\right\}}, n=1,2, \ldots$ Does the sequence $\left(X_{n}\right)_{n \geq 1}$ converge in probability? almost surely? in the mean-square sense?

Problem 3. Consider a sequence of i.i.d. RVs X_{1}, X_{2}, \ldots with CDF F. Let $\lambda_{1}, \lambda_{2}, \ldots$ be a sequence of numbers with $\lambda_{n} \rightarrow \infty$. Consider the sequence of events $A_{n}=\left\{\max _{1 \leq m \leq n} X_{m}>\lambda_{n}\right\}, n=1,2, \ldots$ Your task is to establish whether the events A_{n} occur infinitely often. Namely, show that

$$
P\left(A_{n} \text { i.o. }\right)= \begin{cases}0 & \text { if } \sum_{n \geq 1}\left(1-F\left(\lambda_{n}\right)\right)<\infty \\ 1 & \text { if } \sum_{n \geq 1}\left(1-F\left(\lambda_{n}\right)\right)=\infty\end{cases}
$$

Problem 4.

(a) Let X be $\operatorname{Geometric}(p)$. Show that

$$
E\left(\frac{1}{1+X}\right)=\ln \left((1-p)^{\frac{p}{p-1}}\right)
$$

(b) For $\lambda>0$ let X_{n} be $\operatorname{Geometric}\left(\frac{\lambda}{\lambda+n}\right), n=1,2, \ldots$ Show that X_{n} / n converges in distribution to an exponential distribution and find the parameter of the limit distribution.

Problem 5. Let X, Y be independent RVs in \mathbb{N} with $p_{X}(n)=p_{Y}(n)=2^{-n}, n=1,2, \ldots$. Find
(a) $P(\min (X, Y) \leq n) ;$
(b) $P(X=Y)$;
(c) $P(X>Y)$;
(d) $P(X$ divides $Y)$;
(e) $P(X \geq k Y)$, where k is a given positive integer.

The answers to parts (a),(b),(d),(e) should not include any infinite sums.

