ENEE620. Final examination, December 16-17, 2020.

- Please submit your work as a single PDF file to ELMS/Canvas Assignments by 12/17, 4pm US Eastern time.
- Max score=85 points
- Your answers should be justified. Giving just the answer may result in no credit for the problem.
- Please pay attention to the writing. You may lose points if your paper is difficult to read.

Problem 1. (20pt) For $n \in \mathbb{N}$ consider probability mass functions $p_{k, n}, k=1, \ldots, n$ given by

$$
p_{k, n}(-\sqrt{n})=p_{k, n}(\sqrt{n})=\frac{1}{2 n} ; p_{k, n}(0)=1-\frac{1}{n} .
$$

Let $X_{k, n}, k=1, \ldots, n$ be i.i.d. RVs with pmf $p_{k, n}$ and define

$$
S_{n}=\sum_{k=1}^{n} X_{k, n}, \quad n=1,2, \ldots
$$

(a) For each $n=1,2, \ldots$ find $E X_{k, n}, \operatorname{Var}\left(X_{k, n}\right)$ for all $k=1, \ldots, n$.
(b) Does the sequence $\left\{\frac{S_{n}}{n}, n=1,2, \ldots\right\}$ converge in probability? If yes, what is the limiting RV?
(c) Consider the sequence

$$
\left\{R_{n}=\frac{S_{n}}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}, n=1,2, \ldots\right\}
$$

Does it converge in distribution? If yes, what is the limiting RV? (One way to proceed is to use characteristic functions; in particular, what is this function for the Poisson distribution?).

Problem 2. (15pt) Let $\left(N_{t}\right)_{t \geq 0}$ be a Poisson process $\operatorname{PP}(\lambda)$. Consider a process

$$
X_{t}=\xi \cdot(-1)^{N(t)}, \quad t \geq 0
$$

where ξ is a Bernoulli RV independent of N and such that $P(\xi=1)=P(\xi=-1)=1 / 2$ (for a given t we flip the coin to find ξ and then compute X_{t}). Show that $E X_{t}=0$ and $E\left[X_{s} X_{t}\right]=e^{-2 \lambda|t-s|}$.

Problem 3. (15pt) Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. nonnegative RVs with a continuous $\operatorname{CDF} F(x)$. Let $Z_{1}=1$, $Z_{k}=\min \left\{n>Z_{k-1}: X_{n} \geq \max \left(X_{1}, \ldots, X_{n-1}\right)\right\}, k \geq 1$ be the sequences of records.

Does the sequence of RVs $\left(Z_{k}\right)_{k \geq 1}$ form a Markov chain? If yes, find the transition probability matrix of this Markov chain.

Problem 4. (20pt) Let X and Y be two Gaussian RVs with $E X=E Y=0, E X^{2}=E Y^{2}=1$, and $E(X Y)=\rho$. Show that
(a) $E[\max (X, Y)]=\sqrt{(1-\rho) / \pi}$
(b) $E(X \mid Y)=\rho Y, \operatorname{Var}(X \mid Y)=1-\rho^{2}$
(c) $E(X \mid X+Y=z)=z / 2, \operatorname{Var}(X \mid X+Y=z)=(1-\rho) / 2$
(d) $E(X+Y \mid X>0, Y>0)=2 \sqrt{2 / \pi}$.

Problem 5. (15pt) Let $Z_{i}, i \geq 1$ be a collection of i.i.d. RVs with $P(Z=-1)=3 / 4$ and $P(Z=c)=1 / 4$, where c is a real number. Let $X_{n}=X_{0}+Z_{1}+Z_{2}+\cdots+Z_{n}, n \geq 1$, where $X_{0}=5$.
(a) Find a value of c such that the sequence $\left(X_{n}\right)_{n}$ forms a martingale.
(b) For the value of c found in Part (a), is there an RV X such that $X_{n} \xrightarrow{\text { a.s. }} X$? Please justify your answer.
(c) For the value of c found in Part (a), is it true that $P\left(\cup_{n \geq 1}\left\{X_{n}=0\right\}\right)=1$? Please justify your answer.

