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Chapter 1

Introduction

1.1 History

In the second half of the 19th century, Pierre Curie experimented with mag-
netism of iron. When placing an iron block in a magnetic field, sometimes

Pierre Curie 1859–1906 the iron will stay magnetized after removing it from the field, and sometimes
the iron will lose the magnetic properties after removal of the field. Curie
discovered that this has to do with the temperature; if the temperature is
below some critical temperature Tc, then the iron will retain magnetism.
If the temperature is higher than Tc then the iron will lose its magnetic
properties.

In the 1920’s, Lenz gave his student Ising a mathematical model for the

Wilhelm Lenz (1888–1957)
above phenomena, and Ising proceeded to study it, solving the one dimen-
sional case in his thesis in 1924. Ising proved that in dimension one, the

Ernst Ising (1900–1998)

magnetization is lost in all temperatures, and conjectured that this is also
the case in higher dimensions.

This was widely accepted until 1936 (!) when Peierls showed that in dimen-
sion 2 and up, there is a phase transition at some finite temperature.

What is percolation?

Let us think of glaciers and ice sheets. As the temperature in the ice rises,
electromagnetic bonds between the molecules are becoming less prevalent
than the kinetic energy of the molecules, so bounds between the molecules

6



1.2. PRELIMINARIES - GRAPHS 7

are starting to break. At some point, a lot of the molecules are no longer
bound to each other, and they start to move more as individuals than as a
structured lattice. The glacier is melting.

This is not exactly what is going on, but it will supply some “real world”
motivation for the mathematical model we are about to introduce.

Figure 1.1: Glacier du Trient near the French-Swiss border on the Mont-
Blanc massif.

In this course we will deal with a cousin of the so-called Ising model: a
model known as percolation, first defined by Broadbent and Hammersley
in 1957. We will mainly be interested in such phase transition phenomena
when some parameter varies (as the temperature in the Ising model).

1.2 Preliminaries - Graphs

We will make use of the structure known as a graph:

X Notation: For a set S we use
(
S
k

)
to denote the set of all subsets of size

k in S; e.g. (
S

2

)
= {{x, y} : x, y ∈ S, x 6= y} .
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Definition 1.2.1 A graph G is a pair G = (V (G), E(G)), where V (G) is
a countable set, and E(G) ⊂

(
V (G)

2

)
.

The elements of V (G) are called vertices. The elements of E(G) are

called edges. The notation x
G∼ y (sometimes just x ∼ y when G is clear

from the context) is used for {x, y} ∈ E(G). If x ∼ y, we say that x is
a neighbor of y, or that x is adjacent to y. If x ∈ e ∈ E(G) then the
edge e is said to be incident to x, and x is incident to e.

The degree of a vertex x, denoted deg(x) = degG(x) is the number of
edges incident to x in G.

X Notation: Many times we will use x ∈ G instead of x ∈ V (G).

Example 1.2.2 • The complete graph.

• Empty graph on n vertices.

• Cycles.

• Z,Z2,Zd.

• Regular trees.

454

Example 1.2.3 Cayley graphs of finitely generated groups: Let G = 〈S〉
be a finitely generated group, with a finite generating set S such that S
is symmetric (S = S−1). Then, we can equip G with a graph structure
C = CG,S by letting V (C) = G and {g, h} ∈ E(C) iff g−1h ∈ S.
S being symmetric implies that this is a graph.
CG,S is called the Cayley graph of G with respect to S.
Examples: Zd, regular trees, cycles, complete graphs.
We will use G and (G,S) to denote the graph CG,S . 454

Arthur Cayley (1821–1895)

Definition 1.2.4 Let G be a graph. A path in G is a sequence γ =
(γ0, γ1, . . . , γn) (with the possibility of n = ∞) such that for all j, γj ∼
γj+1. γ0 is the start vertex and γn is the end vertex (when n <∞).

The length of γ is |γ| = n.
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If γ is a path in G such that γ starts at x and ends at y we write γ : x→ y.

The notion of a path on a graph gives rise to two important notions: con-
nectivity and graph distance.

Definition 1.2.5 Let G be a graph. For two vertices x, y ∈ G define

dist(x, y) = distG(x, y) := inf {|γ| : γ : x→ y} ,

where inf ∅ =∞.

Exercise 1.1 Show that distG defines a metric on G.

(Recall that a metric is a function that satisfies:

• ρ(x, y) ≥ 0 and ρ(x, y) = 0 iff x = y.

• ρ(x, y) = ρ(y, x).

• ρ(x, y) ≤ ρ(x, z) + ρ(z, y). )

� � �

Definition 1.2.6 Let G be a graph. We say that vertices x and y are
connected if there exists a path γ : x → y of finite length. That is, if
distG(x, y) <∞.

The relation x is connected to y is an equivalence relation, so we can
speak of equivalence classes. The equivalence class of a vertex x under
this relation is called the connected component of x.

If a graph G has only one connected component it is called connected.
That is, G is connected if for every x, y ∈ G we have that x↔ y.

Exercise 1.2 Prove that connectivity is an equivalence relation in any
graph. � � �

X All graphs we will consider will have bounded geometry. Specifically, we

will always assume bounded degree; i.e. the degree of any vertex is at most
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some number d.

X Notation: For a path in a graph G, or more generally, a sequence

of elements from a set S, we use the following “time” notation: If s =
(s0, s1, . . . , sn, . . .) is a sequence in S (finite of infinite), then s[t1, t2] =
(st1 , st1+1, . . . , st2) for all integers t2 ≥ t1 ≥ 0.

1.2.1 Transitive Graphs

If G is a graph, then an automorphism of G is a bijection ϕ : G → G
such that x ∼ y if and only if ϕ(x) ∼ ϕ(y) (that is, ϕ preserves the graph
structure). The set of all automorphisms of a graph G is a group under
composition, and is denoted by Aut(G).

Definition 1.2.7 A graph G is called transitive if for every x, y ∈ G
there exists ϕx,y ∈ Aut(G) such that ϕx,y(x) = y. (That is, the group
Aut(G) acts transitively on G.)

Exercise 1.3 Let G = 〈S〉 be a finitely generated group with symmetric
generating set S. Show that the Cayley graph of G is transitive. For
every x, y ∈ G give an example of an automorphism ϕx,y that maps
x 7→ y. � � �

1.3 Percolation

What is percolation?

Suppose G is a graph. Consider the edges of G, and declare an edge of
G “open” with probability p and closed with probability 1 − p, all edges
independent. Consider the (random) sub-graph of G induced by the open
edges. This is not necessarily a connected graph.

We will be interested in the connectivity properties of this random subgraph,
especially in the existence of infinite connected components.

Let us give a proper probabilistic definition.
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Definition 1.3.1 Let G be a graph. Fix p ∈ [0, 1]. Let (ω(e))e∈E(G) be
i.i.d. Bernoulli random variables with mean P[ω(e) = 1] = p. If ω(e) = 1
we say that e is open, otherwise we say that e is closed.

Consider the subgraph ω of G whose vertices are V (ω) = V (G) and edges
E(ω) = {e ∈ E(G) : ω(e) = 1}.

• ω is called p-bond-percolation on G.

• For x ∈ G denote C(x) the connected component of x in ω.

• If y ∈ C(x) we write x↔ y and say that x is connected to y. For
sets A,B we write A↔ B if there exist a ∈ A and b ∈ B such that
a↔ b.

• If |C(x)| =∞ we write x↔∞.

X This model was first defined by Broadbent and Hammersley in 1957.

John Hammersley (1920–2004)

Figure 1.2: The title page of the original paper by Broadbent & Hammersley.
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1.4 Kolmogorov’s 0− 1 Law

Let us briefly recall the measure theory of infinite product spaces.

The σ-algebra for the space containing (ω(e))e∈E(G) is the σ-algebra gener-
ated by the cylinder sets:

If E ⊂ E(G), |E| < ∞ is a finite subset of edges, and η ∈ {0, 1}E(G) is a
0, 1-vector indexed by E(G), then the cylinder around E at η is the set

Cη,E :=
{
ω ∈ {0, 1}E(G) : ∀ e ∈ E , ω(e) = η(e)

}
.

These are the basic measurable sets.

The σ-algebra F for the space is then the σ algebra generated by all cylin-
ders:

F = σ(Cη,E : η ∈ {0, 1}E(G) , E ⊂ E(G), |E| <∞).

For fixed finite subset E ⊂ E(G), |E| <∞, let

FE = σ(ω(e) : e ∈ E) = σ
{
Cη,E : η ∈ {0, 1}E(G)

}
.

This is the information carried by the edges in E. Of course FE ⊂ F .

Perhaps the most useful property of F is that the cylinder sets are dense
in F : that is, for any event A ∈ F , and any ε > 0, there exists a finite
E ⊂ E(G), |E| <∞ and an event B ∈ FE such that P[A4B] < ε.

F is defined to be the smallest σ-algebra containing the cylinder sets, but
does F contain more than cylinders? In fact, it does.

For a finite subset E ⊂ E(G), |E| < ∞, one can also consider the events
that do not depend on the edges in E:

TE = σ(ω(e) : e 6∈ E).

And define the tail-σ-algebra

T =
⋂
E

TE .

These are events the do not depend on a finite configuration of edges; in
other words, for a tail event A ∈ T , ω ∈ A if and only if for any finite
E ⊂ E(G), |E| < ∞ and any η ∈ {0, 1}E(G) such that η(e) = ω(e) for all
e 6∈ E, also η ∈ A.
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Exercise 1.4 Let ω be p-bond-percolation on a graph G.

Show that the event that |C(x)| =∞ is measurable.

Show that the event that there exists an infinite component in ω is
measurable.

Show that this event is a tail event. � � �

Theorem 1.4.1 (Kolmogorov’s 0, 1 Law) Let ω(e)e be i.i.d. random vari-
ables and let A be a tail event. Then, P[A] ∈ {0, 1}.

Andrey Kolmogorov (1903–1987)

Proof. Let A be a tail event. So A ∈ TE for all finite E ⊂ E(G), |E| < ∞.
Let (An)n be a sequence of events such that P[A4An]→ 0, and An ∈ Fn for
all n, where Fn = FEn for some finite subset En ⊂ E(G), |En| < ∞. Note
that

|P[An]− P[A]| = |P[An \A] + P[A ∩An]− P[A]| = |P[An \A]− P[A \An]|
≤ P[An \A] + P[A \An]→ 0.

Since Fn is independent of TEn we have that for all n, P[A∩An] = P[A]P[An]→
P[A]2. On the other hand,

P[A] ≤ P[A ∪An] = P[A ∩An] + P[A4An]→ P[A]2.

Since P[A] ∈ [0, 1] we must have that P[A] = P[A]2 and so P[A] ∈ {0, 1}. ut

Corollary 1.4.2 For a graph G define Θ(p) = ΘG(p) to be the probability
that p-bond percolation on G contains an infinite component. Then,
Θ(p) ∈ {0, 1}.



Chapter 2

Basic Properties

2.1 Monotonicity

Recall that the sample space for percolation on G is {0, 1}E(G). There is a
natural partial order on elements of this space: ω ≤ η if ω(e) ≤ η(e) for all
e ∈ E(G). In other words, a configuration η is larger than ω if any edge
open in ω is also open in η.

Definition 2.1.1 Let A be an event in percolation on G. We say that A is
increasing if ω ≤ η and ω ∈ A imply that η ∈ A; that is, opening more
edges for configurations in A remains in A.

We say that A is decreasing if ω ≤ η and η ∈ A implies that ω ∈ A;
that is closing edges remains in A.

Exercise 2.1 Show that {x↔∞} is an increasing event.

Show that {x↔ y} is an increasing event.

Show that A is increasing if and only if Ac is decreasing.

Show that the union of increasing events is increasing.

Show that the intersection of increasing events is increasing. � � �

X One can also define increasing (respectively, decreasing) functions on

14
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{0, 1}E(G).

Consider the following procedure to generate p-percolation on a graph G:
Let (Ue)e∈E(G) be i.i.d. random variables indexed by the edges of G, each
distributed uniformly on [0, 1]. For any p ∈ [0, 1], let Ωp(e) = 1 if Ue ≤ p.

Then, Ωp is a p-percolation process on G. Moreover, this couples all perco-
lation processes on G in one space, with the property that for p ≤ q, if an
edge e is open in Ωp then it is open in Ωq.

X Notation: Henceforth, we will use P,E to denote the probability mea-

sure and expectation on the space of the above coupling (that is, of the
i.i.d. sequence of uniform random variables). In this space, we use Ωp to
denote the percolation cluster induced by the edges e with Ue ≤ p. Pp,Ep
denote the measure and expectation on the space of p-percolation. If it is
not clear from the context, we add super-scripts PGp ,EGp to stress the graph
on which percolation is performed.

Lemma 2.1.2 Let A be an increasing event on {0, 1}E(G). Let B be a
decreasing event. Then, for all p ≤ q,

Pp[A] ≤ Pq[A] and Pp[B] ≥ Pq[B].

Proof. Under the natural coupling with uniform random variables, recall
that Ωp(e) = 1 if Ue ≤ p. Since Ωp ≤ Ωq for p ≤ q, we get that if Ωp ∈ A
then Ωq ∈ A. So

Pp[A] = P[Ωp ∈ A] ≤ P[Ωq ∈ A] = Pq[A].

The proof for B follows by noticing that Bc is an increasing event. ut

Monotonicity and the 0, 1 law combined give:

Corollary 2.1.3 Let ΘG(p) denote the probability that there exists an
infinite component. Then, there exists pc = pc(G) ∈ [0, 1] such that for
all p < pc, ΘG(p) = 0 and for all p > pc, ΘG(p) = 1.

Proof. Just define pc = sup {p : ΘG(p) = 0}. ut

The structure of ΘG is almost fully understood. Two main questions remain:



16 CHAPTER 2. BASIC PROPERTIES

0 1pc

Figure 2.1: The quite boring graph of ΘG

• For a graph G what is the transition point pc(G)? When is 0 <
pc(G) < 1?

• For a graph G, does percolation percolate at criticality? That is, what
is ΘG(pc)?

The second question is perhaps the most important open question in perco-
lation theory.

Exercise 2.2 Show that pc(Z) = 1. � � �

2.2 Translation Invariance

Last chapter we used Kolmogorov’s 0, 1 Law to show that Θ(p) ∈ {0, 1}. We
reprove this for transitive graphs.

For a graph G, we say that an event A ∈ F is translation invariant if
ϕA = A for all ϕ ∈ Aut(G). Here ϕA = {ϕω : ω ∈ A} where (ϕω)(e) =
ω(ϕ−1(e)) and ϕ({x, y}) = {ϕ(x), ϕ(y)}.

Exercise 2.3 Show that the event that there exists an infinite component
is translation invariant. � � �
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Lemma 2.2.1 Let G be an infinite transitive graph. If A is a translation
invariant event then P[A] ∈ {0, 1}.

Proof. Transitivity is used in the following

Exercise 2.4 LetG be an infinite transitive graph, and let E ⊂ E(G), |E| <
∞ be some finite subset. Then, there exists ϕ ∈ Aut(G) such that
ϕE ∩ E = ∅. � � �

Given this exercise, let A be translation invariant. Let (An)n be a sequence
of events An ∈ Fn where Fn = FEn for finite subsets En ⊂ E(G), |En| <∞,
and such that P[A4An]→ 0.

This tells us that in some sense we can replace A by An without losing much.
Indeed, for any ϕ ∈ Aut(G),

P[A ∩ ϕA]− P[An ∩ ϕAn] ≤ P[(A ∩ ϕA) \ (An ∩ ϕAn)] ≤ P[A \An] + P[ϕ(A \An)]

= 2P[A \An]→ 0.

For every n let ϕn ∈ Aut(G) be such that ϕnEn ∩ En = ∅. Since An ∈ Fn,
we get that An is independent of ϕnAn for all n. Since A = ϕnA for all n,

P[A] = P[A ∩ ϕnA] ≤ P[An ∩ ϕnAn] + 2P[A4An]

= P[An]P[ϕnAn] + 2P[A4An]→ P[A]2.

So P[A] = P[A]2 and thus must be in {0, 1}. ut

This provides another proof of Corollary 1.4.2 for transitive graphs.
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Percolation Probability (θ(p))

3.1 Cluster at a Specific Vertex

It will be more convenient to study the cluster at a specific vertex, C(x).

Definition 3.1.1 For percolation on an infinite connected graph G, define
the function θG,x(p) = Pp[x↔∞]. If G is a transitive graph, then write
θG(p) = θG,x(p), since this latter function does not depend on x.

Note that θG,x(p) is monotone non-decreasing, θG,x(0) = 0 and θG,x(1) = 1
(if G is an infinite connected graph). So it would be natural to define

pc(G, x) = sup {p : θG,x(p) = 0} .

We will see that actually pc(G, x) = pc(G) and does not depend on x.

In fact, we will see that the following are equivalent for p ∈ [0, 1]:

• ΘG(p) = 1.

• θG,x(p) > 0 for some x.

• θG,x(p) > 0 for all x.

18
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3.2 Harris’ Inequality (FKG)

In 1960 Harris showed that ΘZ2(1/2) = 0 (so pc(Z2) ≥ 1/2). In his proof
he introduced a correlation inequality, that in words states that any two
increasing functions of percolation configurations have positive covariance.
This inequality has also come to be commonly known by the FKG inequality,
for Fortuin, Kasteleyn and Ginibre who proved some generalizations of it
for the non-independent case.

Ted Harris (1919–2005)

In order to state Harris’ inequality properly, we would like the concept of
increasing functions on {0, 1}E(G).

Definition 3.2.1 A function X : {0, 1}E(G) → R is called increasing if
X(ω) ≤ X(η) for all ω ≤ η. X is called decreasing if X(ω) ≥ X(η) for
all ω ≤ η.

Exercise 3.1 Let A be an event. Show that the function 1A is increasing
if and only if A is an increasing event. � � �

X Any measurable function X : {0, 1}E(G) → R is a random variable, so we

can speak of expectation, moments, etc.

Exercise 3.2 Prove that if X is an increasing integrable random variable
then for any p ≤ q we have Ep[X] ≤ Eq[X]. � � �

We turn to Harris’ Lemma:

Lemma 3.2.2 For percolation on a graph G let X,Y be two increasing
random variables in L2 (i.e. E[X2],E[Y 2] <∞). For any p,

Ep[XY ] ≥ Ep[X] · Ep[Y ].

Exercise 3.3 For percolation on G, let X,Y be decreasing random vari-
ables in L2. Let Z be an increasing random variable in L2. Show that
for any p,

• Ep[XZ] ≤ Ep[X] · Ep[Z].
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• Ep[XY ] ≥ Ep[X] · Ep[Y ].

� � �

Proof of Lemma 3.2.2. First, note that

E[XY ] ≥ E[X]E[Y ] ⇐⇒ E[(X − E[X])(Y − E[Y ])] ≥ 0,

and that X is increasing if and only if X − E[X] is increasing. So we can
assume without loss of generality that E[X] = 0 and E[Y ] = 0.

Next, we prove the lemma in the case where X,Y ∈ FE for some finite
E ⊂ E(G), |E| <∞. This is done by induction on |E|.

Base: |E| = 1. Suppose E = {e}. In this case, X,Y are functions of
ω(e) = 1 or ω(e) = 0. That is, X is determined by two numbers X0, X1 ∈ R:

∀ ω ∈ {0, 1}E(G)X(ω) = 1{ω(e)=0} ·X0 + 1{ω(e)=1} ·X1.

Since E[X] = 0, we have that 0 = E[X] = pX1+(1−p)X0, so X1 = −1−p
p X0.

Since X is increasing, X0 ≤ X1. So it must be that X0 ≤ 0. Similarly, for Y
with Y (ω) = 1{ω(e)=0} ·Y0 + 1{ω(e)=1} ·Y1 we have Y1 = −1−p

p Y0 and Y0 ≤ 0.
Now,

E[XY ] = pX1Y1 + (1− p)X0Y0 = X0Y0 ·
(

(1− p)2

p
+ 1− p

)
= X0Y0 ·

1− p
p
≥ 0.

Induction step: |E| = n + 1. Assume that E = {e0, e1, . . . , en}. Let
E′ = {e1, . . . , en}.

Let η ∈ {0, 1}E′ . For ω ∈ {0, 1}E(G) let ωη be defined by ωη(e) = ω(e) if
e 6∈ E′ and ωη(e) = η(e) if e ∈ E′. Consider the random variables

Xη(ω) = X(ωη) and Yη(ω) = Y (ωη).

Then, Xη, Yη ∈ F{e0} and are increasing. So by the |E| = 1 case,

E[XηYη] ≥ E[Xη] · E[Yη].

This holds for any choice of η ∈ {0, 1}E′ . Thus, a.s.

E[XY |FE′ ] ≥ E[X|FE′ ] · E[Y |FE′ ].
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Now, consider the random variables

X ′ = E[X|FE′ ] and Y ′ = E[Y |FE′ ].

Note that X ′, Y ′ are increasing (because X,Y are). Since |E′| = n, by
induction,

E[XY ] = EE[XY |FE′ ] ≥ E [E[X|FE′ ] · E[Y |FE′ ]]
≥ EE[X|FE′ ] · EE[Y |FE′ ] = E[X] · E[Y ].

This proves Harris’ Lemma for random variables that depend on finitely
many edges.

To extend to infinitely many edges we use the (L2-) Martingale Convergence
Theorem:

Theorem 3.2.3 (Martingale Convergence Theorem) Let (Mn)n be a L2-
bounded martingale (that is, such that supn E[M2

n] < ∞). Then, Mn →
M a.s. and in L2 for some M in L2.

A proof, and more on martingales, can be found in Probability: Theory and
Examples by Rick Durrett, Chapter 5.

Now, back to Harris’ Lemma: Let e1, e2, . . . , be some ordering of the edges
in E(G). Let Fn = F{e1,...,en}. If X is in L2 then Xn := E[X|Fn] is a
martingale (known as the information exposure martingale). Similarly for
Yn := E[Y |Fn]. Now, point-wise, Xn → X and Yn → Y . Since (Xn)n, (Yn)n
converge to a limit a.s. and in L2 by the Martingale Convergence Theorem,
these limits must be X and Y . That is,

E[(X −Xn)2]→ 0 and E[(Y − Yn)2]→ 0.

An application of Cauchy-Schwarz gives,

E[|XY −XnYn|] ≤ E[|X| · |Y − Yn|] + E[|Yn| · |X −Xn|]
≤
√
E[X2] · E[(Y − Yn)2] +

√
E[Y 2

n ] · E[(X −Xn)2]→ 0.

For every n, Xn, Yn are increasing. So by the finite case of Harris’ Lemma,
E[XnYn] ≥ E[Xn] · E[Yn]. Hence,

E[XY ] = lim
n→∞

E[XnYn] ≥ lim
n→∞

E[Xn] · E[Yn] = E[X] · E[Y ].

ut
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Exercise 3.4 Replace the use of the martingale convergence theorem in
the previous proof with the following straightforward argument:

Let X : {0, 1}E(G) → R be a random variable in L2. Let (En)n be a
sequence of subsets in E(G). Assume that

⋃
nEn = E(G). For each n

define Xn = Ep[X | FEn ].

Show that Xn → X a.s.

Show that Xn → X in L2.

Show that if X is increasing then so is Xn, for any n. � � �

3.3 Infinite Cluster at a Vertex

We now use Harris’ Inequality to prove

Theorem 3.3.1 Let G be an infinite connected graph. The following are
equivalent.

• ΘG(p) = 1.

• There exists x such that θG,x(p) > 0.

• For all x, θG,x(p) > 0.

Proof. We will show that for any x, ΘG(p) = 1 if and only if θG,x(p) > 0.

Note that
ΘG(p) ≤

∑
z

θG,z(p).

So if ΘG(p) = 1 then there exists z such that θG,z(p) > 0. Since G is
connected, the event {x↔ z} has positive probability. Since this event is
increasing, Harris’ Lemma gives

θG,x(p) = Pp[x↔∞] ≥ Pp[x↔ z, z ↔∞] ≥ Pp[x↔ z] · θG,z(p) > 0.

One the other hand, if θG,x(p) > 0 then

ΘG(p) = Pp[∃ z : z ↔∞] ≥ Pp[x↔∞] > 0,



3.4. ONE-DIMENSIONAL GRAPHS 23

so the 0, 1 law gives that ΘG(p) = 1. ut

Corollary 3.3.2 Let G be an infinite connected graph. Then, for any
p < pc(G) and any x we have that θG,x(p) = 0. For any p > pc and any
x we have that θG,x(p) > 0. Thus,

pc(G) = sup {p : ΘG(p) = 0} = inf {p : ΘG(p) = 1}
= sup {p : θG,x(p) = 0} = inf {p : θG,x(p) > 0} .

Thus we are left with the two interesting and basic questions:

• What is pc(G)? When is pc(G) < 1?

• What is ΘG(pc(G))?

Exercise 3.5 Let H be a subgraph of G. Show that pc(H) ≥ pc(G). ���

3.4 One-dimensional graphs

Definition 3.4.1 Let o be a vertex in a graph G. A subset of edges
A ⊂ E(G) is called a cutset for o if by removing A from G the vertex o
is left in a finite connected component. Equivalently, any infinite simple
path started at o must cross A.

Definition 3.4.2 A graph G is one-dimensional if there exists a vertex
o ∈ G and a sequence of pairwise disjoint cutsets (An)n for o such that
supn |An| <∞.

Exercise 3.6 Show that Z is one-dimensional.

Show that the “ladder graph” Z× {0, 1} is one-dimensional. � � �

Exercise 3.7 Let G be a finitely generated group. Assume that H is a
finite index subgroup of G, [G : H] < ∞, such that H ∼= Z. Show that
any Cayley graph of G is one-dimensional. � � �



24 CHAPTER 3. PERCOLATION PROBABILITY (θ(P ))

Theorem 3.4.3 If G is a one-dimensional graph then pc(G) = 1.

Proof. Let o be a vertex and (An)n a sequence of pairwise disjoint cutsets
such that |An| ≤M for some constant M > 0.

Let En be the event that all edges in An are closed. Note that Pp[En] ≥
(1−p)M . Moreover, since the cutsets (An)n are pairwise disjoint, the events
(En)n are independent. Thus, as long as p < 1,

Pp[∩k≤n(Ek)c] ≤ (1− (1− p)M )n → 0.

That is, the event
⋃
n En has probability 1. Consider this event. It states

that there exists some cutset An such that ell edges in An are closed. That
is, the event

⋃
n En implies the event that there exists n for which C(o) is in

the subgraph of G with An removed. Specifically,
⋃
n En ⊂ {|C(o)| <∞}, so

Pp[|C(o)| <∞] = 1 for all p < 1. ut



Chapter 4

Phase transition in Zd

4.1 Peierls’ Argument

The fact that pc(Z) = 1 is related to the fact that the Ising model does
not retain magnetization at any finite temperature. Peierls originally used
the following type of argument to show that the Ising model has non-trivial
phase transition in dimension 2 and up, and this is related to the fact that
0 < pc(Zd) < 1 for all d ≥ 2. We will use Peierls’ argument to prove this.

Rudolf Peierls (1907–1995)

Theorem 4.1.1 LetG be an infinite connected graph with degrees bounded
by D. Then,

pc(G) ≥ 1

D − 1
.

Proof. A self-avoiding path in G started at x is a path γ such that γ0 = x
and γi 6= γj for all i 6= j. Let Sn be the set of self-avoiding paths in G
started at x of length n, and let µn = |Sn|. Let µ = lim supn(µn)1/n.

Note that since D is the maximal degree in G, and since a self-avoiding path
cannot backtrack over the last edge it passed through, µn ≤ D(D − 1)n−1

and µ ≤ D − 1. So it suffices to show that pc(G) ≥ µ−1.

Note that for any path γ ∈ Sn, since γ is self-avoiding, γ passes through n
different edges, so

Pp[γ ⊂ C(x)] = Pp[γ is open ] = pn.

25
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Now,

Pp[∃ γ ∈ Sn : γ ⊂ C(x)] ≤
∑
γ∈Sn

Pp[γ ⊂ C(x)] = µnp
n.

Now, the event that |C(x)| = ∞ is the event that C(x) contains an infinite
self-avoiding path started at x. That is, |C(x)| = ∞ implies that for every
n, there exists γ ∈ Sn such that γ ⊂ C(x). Thus,

Pp[x↔∞] = lim
n→∞

Pp[∃ γ ∈ Sn : γ ⊂ C(x)] ≤ lim
n→∞

(µ1/n
n p)n.

If p < µ−1 then this last limit is 0. So θG,x(p) = 0 for all p < µ−1, which
implies that pc(G) ≥ µ−1. ut

Example 4.1.2 Let Td be the d-regular tree. Peierls’ argument gives that
pc(Td) ≥ 1

d−1 .

Later we will see that pc(Td) = 1
d−1 . 454

4.2 Upper Bound via Cut-Sets

Let G be an infinite connected graph. Let x ∈ G be some fixed vertex.
Recall that a cut-set is a set Π of edges such that any infinite self-avoiding
path started at x must pass through an edge of Π. A minimal cut-set is
a cut-set Π such that for any e ∈ Π, the set Π \ {e} is not a cut-set (i.e. Π
is minimal with respect to inclusion).

Exercise 4.1 Show that any finite cut-set must contain a minimal cut-set.
� � �

Proposition 4.2.1 Let G be an infinite connected graph and let x ∈ G.
For percolation on G, x ↔ ∞ if and only if for every finite minimal
cut-set Π it holds that Π contains at least one open edge.

In other words, C(x) is finite if and only if there exists a finite cut-set Π
such that all edges in Π are closed.

Proof. If C(x) is finite, then the set {{y, z} ∈ E(G) : y ∈ C(x), z 6∈ C(x)} is
a finite cut-set. All edges in this cut-set must be closed because one of their
endpoints is not in C(x).
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If C(x) is infinite, then there exists an infinite self-avoiding path γ starting
at x, whose edges are all open. Let Π be any finite cut-set. Then γ must
pass through some edge of Π, so Π must contain an open edge. ut

Proposition 4.2.2 Let G be an infinite connected graph, and let x ∈ G.
Let Cn be the set of minimal cut-sets of size n. If there exist n0 and
M > 1 such that |Cn| ≤Mn for all n > n0, then pc(G) ≤ M−1

M .

Proof. Take p > M−1
M so that M(1− p) < 1. If Π ∈ Cn then the probability

that all eges of Π are closed is (1− p)n. Thus, there exists N large enough
so that for

A := ∃ n > N : ∃ Π ∈ Cn : all edges in Π are closed

we have Pp[A] ≤∑n>N M
n(1− p)n ≤ 1

2 .

Now, let S = {Π ∈ Cn : n ≤ N} and let E =
⋃

Π∈S S.

Let B be the event that all edges in E are open. Since E is finite, Pp[B] > 0.
By FKG,

Pp[B ∩Ac] ≥ Pp[B] · (1− Pp[A]) ≥ 1

2
Pp[B] > 0.

Now, if there exists a minimal cut-set Π such that all the edges of Π are
closed, then either |Π| ≤ n and so B does not occur, or A occurs. Thus,
{x 6↔ ∞} ⊂ Bc ∪A, which implies {x↔∞} ⊃ B ∩Ac. So

θG,x(p) = Pp[x↔∞] ≥ 1

2
Pp[B] > 0,

and so pc(G) ≤ p.

Since this holds for all p > M−1
M we get that pc(G) ≤ M−1

M . ut

4.3 Duality

For Zd, we know that pc(Zd) ≤ pc(Z2) for all d ≥ 2. So in order to show that
Zd has a non-trivial phase transition it suffices to prove that pc(Z2) < 1.

The main tool to show this is duality, which is due to the fact that Z2 is a
planar graph. This dual structure will help us count the number of minimal
cut-sets of a given size.
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Suppose G is a planar graph. Then, we can speak about faces. Each edge
is adjacent to exactly two faces (Euler’s formula). So we can define a dual
graph Ĝ whose vertex set is the set of faces of G, and to each edge e ∈ E(G)
we have a corresponding edge ê ∈ E(Ĝ) which is the edge connecting the
faces adjacent to e.

Figure 4.1: A planar graph (vertices are squares, edges are solid lines) and
it’s dual (vertices are disks, edges are dashed lines).

For Z2 the dual structure is special: Ẑ2 is isomorphic to Z2 itself. Indeed,
every face of Z2 can be identified with the point at it’s center, so the vertices

of Ẑ2 are (1
2 ,

1
2) + Z2. For an edge e ∈ E(Z2) the dual edge is just the edge

of (1
2 ,

1
2) + Z2 that crosses the edge e.

The self duality of Z2 provides a natural coupling of percolation on the two

graphs. For an edge ê ∈ E(Ẑ2) we declare ê open if and only if e is closed.

So p-percolation on Z2 is coupled to (1− p)-percolation on Ẑ2.

A self-avoiding polygon in a graph G is a finite path γ such that γ0 = γn = x
and γj 6= γi for 0 ≤ j 6= i < n, where n is the length of γ; that is, a path that
visits every vertex once, except for the initial vertex with coincides with the
terminal vertex.
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e
ê

Figure 4.2: Z2 and it’s dual.
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Proposition 4.3.1 Π is a minimal cut-set in Z2 (with respect to 0) if and

only if Π̂ := {ê : e ∈ Π} is a self-avoiding polygon in Ẑ2.

Proof. Let γ be a self-avoiding polygon in Ẑ2. Then, γ splits the plane into
two components, one infinite and the other finite, but non-empty. This finite

component contains at least one face of Ẑ2 so a vertex of Z2. So the edges
dual to γ are a cut-set.

Now, let Π be a minimal cut-set in Z2. If F is a face in Z2 adjacent to an
edge e ∈ Π, then there must be another edge e′ 6= e in Π that is adjacent to
F ; if there wasn’t then one could go around the face F without crossing e,
so Π \ {e} would still be a cut-set.

So for γ = Π̂, every vertex that γ passes through has degree at least 2. Since
γ is finite, it contains a self-avoiding polygon, say γ′. However, if we go back
with duality, Π′ := γ̂′ is a cut-set contained in Π, and so must be Π′ = Π by
minimality of Π. So γ′ = γ and γ is a self-avoiding polygon.

Now, for the other direction, let γ be a self-avoiding polygon in Ẑ2. So the
dual of γ, Π = γ̂ is a cut-set. Let Π′ ⊂ Π be a minimal cut-set. Then
the dual γ′ = Π̂′ is a self-avoiding polygon, and also γ′ ⊂ γ. But any self-
avoiding polygon cannot strictly contain another self-avoiding polygon, so
γ′ = γ, and so Π = Π′. This implies that Π is a minimal cut-set. ut

Figure 4.3: A minimal cut-set and it’s dual self-avoiding polygon.

We can now use Proposition 4.3.1 to count the number of minimal cut-sets
of size n in Z2.

Let Π be a minimal cut-set in Z2 of size |Π| = n. If Π does not intersect
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the edges of the box {z : ||z||∞ ≤ n} then the isoperimetric inequality in
Z2 tells us that |Π| > n, so it must be that Π contains an edge at distance

at most n from 0. Let γ be the corresponding self-avoiding polygon in Ẑ2.
Then, γ is a path of length n, with a point at distance at most n from
(1

2 ,
1
2). There are at most 4n2 choices for such a point, and then since γ

is self avoiding, there can be at most 4 · 3n−1 possible such paths. So the
number of possibilities for γ is at most 16n23n−1.

Thus, for any ε > 0 there exists n0(ε) such that for all n > n0(ε), the number
of minimal cut-sets in Z2 of size n is at most 16n23n−1 < (3 + ε)n. So we
conclude that pc(Z2) ≤ 2+ε

3+ε for any ε which gives a bound of pc(Z2) ≤ 2
3 .

We conclude:

Corollary 4.3.2 For all d ≥ 2,

1

2d− 1
≤ pc(Zd) ≤

2

3
.



Chapter 5

Percolation on Trees

5.1 Galton-Watson Processes

Francis Galton (1822-1911)

Galton and Watson were interested in the question of the survival of aristo-
cratic surnames in the Victorian era. They proposed a model to study the
dynamics of such a family name.

Henry Watson (1827-1903)

In words, the model can be stated as follows. We start with one individual.
This individual has a certain random number of offspring. Thus passes one
generation. In the next generation, each one of the offspring has its own
offspring independently. The processes continues building a random tree of
descent. Let us focus only on the population size at a given generation.

Definition 5.1.1 Let µ be a distribution on N; i.e. µ : N → [0, 1] such
that

∑
n µ(n) = 1. The Galton-Watson Process, with offspring dis-

tribution µ, (also denoted GWµ,) is the following Markov chain (Zn)n on
N:

Let (Xj,k)j,k∈N be a sequence of i.i.d. random variables with distribution
µ.

• At generation n = 0 we set Z0 = 1. [ Start with one individual. ]

32
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• Given Zn, let

Zn+1 :=

Zn∑
k=1

Xn+1,k.

[ Xn+1,k represents the number of offspring of the k-th individual
in generation n. ]

Example 5.1.2 If µ(0) = 1 then the GWµ process is just the sequence Z0 =
1, Zn = 0 for all n > 0.

If µ(1) = 1 then GWµ is Zn = 1 for all n.

How about µ(0) = p = 1−µ(1)? In this case, Z0 = 1, and given that Zn = 1,
we have that Zn+1 = 0 with probability p, and Zn+1 = 1 with probability
1− p, independently of all (Zk : k ≤ n). If Zn = 0 the Zn+1 = 0 as well.

What is the distribution of T = inf {n : Zn = 0}? Well, on can easily check
that T ∼ Geo(p). So GWµ is essentially a geometric random variable.

We will in general assume that µ(0) +µ(1) < 1, otherwise the process is not
interesting. 454

5.2 Generating Functions

X Notation: For a function f : R → R we write f (n) = f ◦ · · · ◦ f for the

composition of f with itself n times.

Let X be a random variable with values in N. The probability generating
function, or PGF, is defined as

GX(z) := E[zX ] =
∑
n

P[X = n]zn.

This function can be thought of as a function from [0, 1] to [0, 1]. If µ(n) =
P[X = n] is the density of X, then we write Gµ = GX .

Some immediate properties:
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Exercise 5.1 Let GX be the probability generating function of a random
variable X with values in N. Show that

• If z ∈ [0, 1] then 0 ≤ GX(z) ≤ 1.

• GX(1) = 1.

• GX(0) = P[X = 0].

• G′X(1−) = E[X].

• E[X2] = G′′X(1−) +G′X(1−).

• ∂n

∂znGX(0+) = n!P[X = n].

� � �

Proposition 5.2.1 When X takes values in {0}∪ [1,∞) then the PGF GX
is convex on [0, 1].

Proof. GX is twice differentiable, with

G′′X(z) = E[X(X − 1)zX−2] ≥ 0.

ut

The PGF is an important tool in the study of Galton-Watson processes.

Proposition 5.2.2 Let (Zn)n be a GWµ process. For z ∈ [0, 1],

E[zZn+1
∣∣ Z0, . . . , Zn] = Gµ(z)Zn .

Thus,
GZn = G(n)

µ = Gµ ◦ · · · ◦Gµ.

Proof. Conditioned on Z0, . . . , Zn, we have that

Zn+1 =

Zn∑
k=1

Xk,
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where X1, . . . , are i.i.d. distributed according to µ. Thus,

E[zZn+1
∣∣ Z0, . . . , Zn] = E[

Zn∏
k=1

zXk
∣∣ Z0, . . . , Zn] =

Zn∏
k=1

E[zXk ] = Gµ(z)Zn .

Taking expectations of booths sides we have that

GZn+1(z) = E[zZn+1 ] = E[Gµ(z)Zn ] = GZn(Gµ(z)) = GZn ◦Gµ(z).

An inductive procedure gives

GZn = GZn−1 ◦Gµ = GZn−2 ◦Gµ ◦Gµ = · · · = G(n)
µ ,

since GZ1 = Gµ. ut

5.3 Extinction

Recall that the first question we would like to answer is the extinction prob-
ability for a GW process.

Let (Zn)n be a GWµ process. Extinction is the event {∃n : Zn = 0}. The
extinction probability is defined to be q = q(GWµ) = P[∃n : Zn = 0].
Note that the events {Zn = 0} form an increasing sequence, so

q(GWµ) = lim
n→∞

P[Zn = 0].

Proposition 5.3.1 Consider a GWµ. (Assume that µ(0) + µ(1) < 1.) Let
q = q(GWµ) be the extinction probability and G = Gµ. Then,

• q is the smallest solution to the equation G(z) = z. If only one
solution exists, q = 1. Otherwise, q < 1 and the only other solution
is G(1) = 1.

• q = 1 if and only if G′(1−) = E[X] ≤ 1.

X Positivity of the extinction probability depends only on the mean number

of offspring!
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Proof. If P[X = 0] = G(0) = 0 then Zn ≥ Zn−1 for all n, so q = 0, because
there is never extinction. Also, the only solutions to G(z) = z in this case
are 0, 1 because G′′(z) > 0 for z > 0 so G is strictly convex on (0, 1), and
thus G(z) < z for all z ∈ (0, 1). So we can assume that G(0) > 0.

Let f(z) = G(z)−z. So f ′′(z) > 0 for z > 0. Thus, f ′ is a strictly increasing
function.

• Case 1: If G′(1−) ≤ 1. So f ′(1−) ≤ 0. Since f ′(0+) = −(1−µ(1)) < 0
(because µ(1) < 1), and since f ′ is strictly increasing, for all z < 1
we have that f ′(z) < 0. Thus, the minimal value of f is at 1; that is,
f(z) > 0 for all z < 1 and there is only one solution to f(z) = 0 at 1.

• Case 2: If G′(1−) > 1. Then f ′(1−) > 0. Since f ′(0+) < 0 there
must be some 0 < x < 1 such that f ′(x) = 0. Since f ′ is strictly
increasing, this is the unique minimum of f in [0, 1]. Since f ′(z) > 0
for z > x, as a minimum, we have that f(x) < f(1+x

2 ) ≤ f(1) = 0.
Also, f(0) = µ(0) > 0, and because f is continuous, there exists a
0 < p < x such that f(p) = 0.

We claim that p, 1 are the only solutions to f(z) = 0. Indeed, if
0 < a < b < 1 are any such solutions, then because f is strictly convex
on (0, 1), since we can write b = αa+ (1− α)1 for some α ∈ (0, 1), we
have that 0 = f(b) < αf(a) + (1− α)f(1) = 0, a contradiction.

In conclusion, in the case G′(1−) > 1 we have that there are exactly
two solutions to G(z) = z, which are p and 1.

Moreover, p < x for x the unique minimum of f , so because f ′ is
strictly increasing,

−1 ≤ −(1− µ(1)) = f ′(0+) ≤ f ′(z) ≤ f ′(p) < f ′(x) = 0

for any z ≤ p. Thus, for any z ≤ p we have that

f(z) = f(z)− f(p) = −
∫ p

z
f ′(t)dt ≤ p− z,

which implies that G(z) ≤ p for any z ≤ p.

Now, recall that the extinction probability admits

q = lim
n→∞

P[Zn = 0] = lim
n→∞

GZn(0) = lim
n→∞

G(n)(0).
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Since G is a continuous function, we get that G(q) = q so q is a solution to
G(z) = z.

If two solutions exists (equivalently, G′(1−) > 1), say p and 1, thenG(n)(0) ≤
p for all n, so q ≤ p and thus must be q = p < 1.

If only one solution exists then q = 1. ut

q

0 1 0 1

G′(1−) > 1

G′(1−) ≤ 1

Figure 5.1: The two possibilities for G′(1−). The blue dotted line and
crosses show how the iterates G(n)(0) advance toward the minimal solution
of G(z) = z.

5.4 Percolation on Regular Trees

Let d ≥ 3 and let T be a rooted d-regular tree; that is, a tree such that every
vertex has degree d except for the root which has degree d − 1. Let o ∈ T
be the root vertex. Note that every vertex that is not the root has a unique
ancestor, which is the neighbor that is closer to the root. Also, every vertex
has d− 1 neighbors farther from the root, which we call descendants.

For each n let Tn = {x : dist(x, o) = n}. If we perform p-percolation on T ,
which vertices are in C(o)?

Well, for a vertex x 6= o let y be the unique ancestor of x; that is let y be
the unique neighbor of x that is closer to o. Then, x↔ o if and only if the
edge {y, x} is open and y ↔ o.
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Now, let Zn be the number of vertices in Tn that are in C(o); Zn = |C(o)∩Tn|.
Then, we have that

Zn =
∑

y∈C(o)∩Tn−1

∑
x∈Tn,x∼y

1{Ωp({y,x})=1}.

Since all these edges are independent, for each y ∈ C(o) ∩ Tn−1, we have
that

∑
x∈Tn,x∼y 1{Ωp({y,x})=1} ∼ Bin(d − 1, p). Also from independence we

get that given Zn−1,

Zn =

Zn−1∑
j=1

Bj ,

where (Bj)j are independent Bin(d− 1, p) random variables.

So (Zn)n constitute a Galton-Watson process with offspring distribution
Bin(d− 1, p).

We thus conclude:

Proposition 5.4.1 If T is a rooted d-regular tree, with root o ∈ T , then
the sequence (|C(o) ∩ Tn|)n is a Galton-Watson process with offspring
distribution Bin(d− 1, p). (Here Tn is the n-th level of the tree T .)

Theorem 5.4.2 For d ≥ 3, and percolation on the d-regular tree Td:

• pc(Td) = 1
d−1 .

• ΘTd(pc) = 0.

Proof. Let o ∈ Td be some vertex. Let x1, . . . , xd be the d neighbors of o.
For every y 6= o there is a unique j such that the shortest path from y to o
must go through xj . We call such a y a descendant of xj (with respect to
o). Let Tj be the subtree of descendants of xj .

Let T = T1 which is a rooted d-regular tree rooted at x1. Since T is a rooted
d-regular tree, the component of x1 in p-percolation on T is infinite if and
only if a Bin(d−1, p) Galton-Watson process survives. That is, θT,x1(p) > 0
if and only if p(d− 1) > 1. So pc(T ) ≤ 1

d−1 .

T is a subgraph of Td, which implies that pc(Td) ≤ pc(T ) ≤ 1
d−1 . Also, the

(maximal) degree in Td is d so pc(Td) ≥ 1
d−1 .
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So pc(Td) = pc(T ) = 1
d−1 , which is the first assertion.

For the second assertion, note that o↔∞ if and only if there exists j such
that |C(xj) ∩ Tj | =∞. Thus,

Pp[o↔∞] ≤
d∑
j=1

Pp[|C(xj) ∩ Tj | =∞] = d · θTj ,xj (p).

For p = 1
d−1 , the Galton-Watson process above does not survive a.s. (be-

cause p(d− 1) = 1). So θTj ,xj (
1
d−1) = 0, and so θTd,o(

1
d−1) = 0. ut



Chapter 6

The Number of Infinite
Components

6.1 The Number of Infinite Clusters

In 1987 Aizenman, Kesten and Newman proved that for percolation on Zd
the infinite component is unique if it exists. Two years later, Burton and
Keane provided a short proof of this result that works for all amenable
transitive graphs.

Michael Aizenman

Harry Kesten

Charles Newman

Lemma 6.1.1 Let G be a transitive infinite connected graph. For perco-
lation on G let N be the number of infinite components. Then, for any
p ∈ (0, 1) there exists k ∈ {0, 1,∞} such that Pp[N = k] = 1.

X Notation: We require some more notation regarding random variables

X : {0, 1}E(G) → R. Let η ∈ {0, 1}E(G) be some vector, and let E ⊂ E(G).

For ω ∈ {0, 1}E(G) define ωη,E(e) = η(e)1{e∈E} + ω(e)1{e6∈E}; that is, the
values of ω on coordinates in E are changed to match those in η. (Note
for example that the cylinder around E at η is just Cη,E = {ω : ω = ωη}.)
Specifically, for the case that η ≡ 1 of η ≡ 0 we write

ω1,E(e) = 1{e∈E} + 1{e6∈E}ω(e) and ω0,E(e) = 1{e6∈E}ω(e).

ω1,E (resp. ω0,E) is the configuration ω after forcing all edges in E to be
open (resp. closed).

40
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For a random variable X : {0, 1}E(G) → R define Xη,E(ω) = X(ωη,E). That
is, Xη,E measures X when the configuration in E is forced to be η. As
above, let X1,E(ω) = X(ω1,E) and X0,E(ω) = X(ω0,E).

Exercise 6.1 Let G be a graph, and let η ∈ {0, 1}E(G) and E ⊂ E(G).

Let X : {0, 1}E(G) → R be a random variable. Show that Xη,E is
measurable with respect to TE (that is, Xη,E does not depend on the
edges in E). � � �

Proof of Lemma 6.1.1. Recall Lemma 2.2.1 that states that any translation
invariant event has probability either 0 or 1. For any k ∈ {0, 1, . . . ,∞} the
event {N = k} is translation invariant. Thus, Pp[N = k] ∈ {0, 1}. Thus,
there is a unique k = kp ∈ {0, 1, . . . ,∞} such that Pp[N = k] = 1.

Let B be some finite subset of G. Let E(B) be the set of edges with both
endpoints in B. We assume that B is such that E(B) 6= ∅. Let CB be the
event that all edges in E(B) are closed, and let OB be the event that all
edges in E(B) are open. As long as p ∈ (0, 1) and E(B) 6= ∅, these events
have positive probability.

Now, let NC be the number of infinite components if we declare all edges
in E(B) to be closed, and let NO be the number of infinite components
if we declare all edges in E(B) to be open. That is, NC = N0,E(B) and
NO = N1,E(B). Note that ωC = ω if and only if ω ∈ CB and ωO = ω if and
only if ω ∈ OB. Also, note that NC , NO ∈ TE(B) and thus are independent of
the edges in E(B). So, using the fact that CB, OB have positive probability,
for k = kp,

Pp[NC = k] = Pp[NC = k|CB] = Pp[NC = N = k|CB] = Pp[N = k|CB] = 1,

and similarly,

Pp[NO = k] = Pp[NO = k|OB] = Pp[NO = N = k|OB] = 1.

So Pp-a.s. NC = NO = k.

Let NB be the number of infinite components that intersect B. Opening all
edges in E(B) connects all components intersecting B, and closing all edges
in E(B) disconnects them. So if NB ≥ 2 and N < ∞, then NO ≤ N − 1
and NC ≥ N .
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Thus, we conclude that for all p ∈ (0, 1), if kp <∞, we have that

Pp[NB ≥ 2] ≤ Pp[NO ≤ NC − 1] = 0.

Fix some o ∈ G. For every r use B above as the ball of radius r around o.
Let Nr be the number of infinite components intersecting the ball of radius
r around o. If kp < ∞ we get that Pp[Nr ≥ 2] = 0. Since Nr ↗ N , we
conclude that if kp <∞, Pp[N ≥ 2] = 0. So kp ∈ {0, 1,∞} as claimed. ut

Exercise 6.2 Give an example of a transitive graph and some p ∈ (0, 1)
for which the number of infinite components in percolation is a.s. ∞.
� � �

6.2 Amenable Graphs

John von Neumann (1903–1957)
Definition 6.2.1 Let G be a connected graph. Let S ⊂ G be a finite
subset. Define the (outer) boundary of S to be

∂S = {x 6∈ S : x ∼ S} .

Define the isoperimetric constant of G to be

Φ = Φ(G) := inf {|∂S|/|S| : S is a finite connected subset of G} .

Of course D ≥ Φ(G) ≥ 0 for any graph, where D is the maximal degree in
G. When Φ(G) > 0, we have that sets “expand”: the boundary of any set
is proportional to the volume of the set.

Definition 6.2.2 Let G be a graph. If Φ(G) = 0 we say that G is
amenable. Otherwise we call G non-amenable.

A sequence of finite connected sets (Sn)n such that |∂Sn|/|Sn| → 0 is
called a Folner sequence, and the sets are called Folner sets.

Erling Folner (1919–1991) The concept of amenability was introduced by von Neumann in the context
of groups and the Banach-Tarski paradox. Folner’s criterion using bound-
aries of sets provided the ability to carry over the concept of amenability to
other geometric objects such as graphs.
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Exercise 6.3 Let S ⊂ Td be a finite connected subset, with |S| ≥ 2.
Show that |∂S| = |S|(d− 2) + 2.

Deduce that Φ(Td) = d− 2. � � �

Exercise 6.4 Show that Zd is amenable. � � �

6.3 The Burton-Keane Theorem

Burton and Keane’s argument consist of the definition of a trifurcation point:
a point where 3 different clusters meet.

Definition 6.3.1 Let G be an infinite connected graph. Let x ∈ G. B(x, r)
denotes the ball of radius r around x (in the graph metric). For percola-
tion on G, let Nr be the number of infinite clusters that intersect B(x, r).
Let Mr be the number of infinite clusters that intersect B(x, r) if we de-
clare all edges in B(x, r) closed; i.e. Mr = (Nr)0,E(B(x,r)). Let Ψr(x) be
the event that x is a r-trifurcation point, defined as follows:

• B(x, r) intersects an infinite cluster (Nr ≥ 1).

• If we closed all edges in B(x, r) then the number of infinite clusters
that the B(x, r) intersect split into at least 3 infinite clusters (Mr ≥
3).

Let us sketch a proof of why there cannot be infinitely many infinite clusters
in transitive amenable graphs. If there are infinitely many infinite clusters,
then three different ones should meet at some ball of radius r, so that the
center of that ball is a r-trifurcation point. That is, there is positive prob-
ability for any point to be a trifurcation point. Transitivity gives that we
expect to see a positive proportion of trifurcation points in any finite set.
But the number of trifurcation points cannot be more than the number of
boundary points (by some combinatorial considerations). If the boundary
is much smaller than the volume of the set, we obtain a contradiction.

The rigorous argument relies on two main lemmas:



44 CHAPTER 6. THE NUMBER OF INFINITE COMPONENTS

Lemma 6.3.2 Let G be a transitive infinite connected graph. Let N be
the number of infinite clusters in percolation on G.

For any p ∈ (0, 1), there exists r > 0 such that if N = ∞ Pp−a.s., then
for any x, Pp[Ψr(x)] > 0.

Robert Burton Proof. For every r > 0 let Nr be the number of infinite clusters that intersect
B(x, r). Let Mr be the number of infinite clusters that intersect B(x, r) if
we declare all edges in B(x, r) closed.

If N =∞ Pp-a.s. then since Nr ↗ N we have that for some r = r(p) > 0,
Pp[Nr ≥ 3] ≥ 1

2 .

The main observation here, is that if we close the edges in B(x, r). then
any infinite component that intersects B(x, r) splits into components that
intersect B(x, r), one of which must be infinite. That is, Mr ≥ Nr a.s. So
we have that

Pp[Ψr(x)] ≥ Pp[Mr ≥ 3, Nr ≥ 1] ≥ Pp[Nr ≥ 3] ≥ 1

2
.

ut

The next lemma is a bit more combinatorial, and will be proven in the next
section.

Michael Keane Lemma 6.3.3 Let G be an infinite connected graph. Let S be a finite
connected subset of G. For percolation on G, the number of r-trifurcation
points in S is at most Dr|∂S|, where D is the maximal degree in G.

These Lemmas lead to the following

Theorem 6.3.4 Let G be a transitive infinite connected graph. Assume
that G is amenable. Then, for any p ∈ (0, 1) there exists k = kp ∈
{0, 1} such that the number of infinite clusters in p-percolation on G is
Pp−a.s. k.

In other words, there is either a.s. no infinite cluster or a.s. a unique
infinite cluster.

Proof. Let o ∈ G be some fixed vertex. Let (Sn)n be a sequence of Folner
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sets. Let r = r(p) > 0 be such that Pp[Ψr(o)] > 0. For each n, let τn be
the number of r-trifurcation points in Sn. Note that by transitivity, using
Lemma 6.3.3,

dr · |∂Sn| ≥ Ep[τn] =
∑
s∈Sn

Pp[Ψr(s)] = |Sn| · Pp[Ψr(o)],

where d is the degree in G. So,

Pp[Ψr(o)] ≤ dr ·
|∂Sn|
|Sn|

→ 0.

By Lemma 6.3.2 this implies that the number of infinite clusters is not ∞
Pp−a.s. So this number is either 0 or 1 by the 0, 1,∞ law. ut

6.4 Proof of Lemma 6.3.3

Proof. Assume first that for every s ∈ S, also B(s, r) ⊂ S.

Define an auxiliary graph Ψ: The vertices of Ψ are the r-trifurcation points
in S and the points in ∂S that are in infinite components. For edges of Ψ,
let x ∼ y if B(x, r) ↔ B(y, r) by an open path that does not pass through
any B(z, r) for some other vertex z, and lies on some infinite component.

Note that by definition, if x is a r-trifurcation point, then in the graph Ψ,
removing x will split Ψ into at least 3 connected components. (This is not
necessarily true for vertices of Ψ which are not trifurcation points.) Here
is where we use the assumption on S. Indeed, if x is a r-trifurcation point
then there are three infinite clusters that intersect S \ B(x, r), that cannot
connect outside of B(x, r). That is, there are at least three points in ∂S that
are vertices of Ψ. These points cannot connect to one another in the graph
Ψ: Indeed, if some part of an infinite path connects two balls around such
points, say B(a, r), B(b, r), then this infinite path must intersect another
boundary point, say c. If c 6= a, b then the infinite path goes through B(c, r)
so would not connect a, b in the graph Ψ. If c = a (or c = b) then the infinite
path would connect the two components coming from B(x, r), so x would
not be a trifurcation point.

We claim:

Claim Let Ψ be a graph and let V ⊂ Ψ be a set of vertices with the
property that for every vertex v ∈ V , the graph induced on Ψ \ {v} has at
least 3 connected components. Then 2|V |+ 2 ≤ |Ψ|.
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Proof of Claim. By induction on |V |. If |V | = 1 then this is obvious, since
|Ψ \ {v} | ≥ 3 for V = {v}.

Now, if |V | = n + 1, then let v ∈ V and let C1, . . . , Ck be the components
of Ψ \ {v}. For every j = 1, 2, let wj be an auxiliary vertex, and consider
the graph Ψj where wj is connected to Cj instead of v. For j = 3 let w3

be an auxiliary vertex, and let Ψ3 be the graph where w3 is connected to
C3, . . . , Ck instead of v.

Let Vj = V ∩ Cj . Then, |Vj | ≤ n, and also, for every v ∈ Vj , if we remove
v from Ψj then there are at least 3 components in Ψj \ {v} (otherwise
Ψ \ {v} would not have at least 3 components). By induction, if Vj 6= ∅
then 2|Vj |+ 2 ≤ |Ψj | for all j = 1, 2, 3 and if Vj = ∅ then this holds because
|Ψj | ≥ 2. So,

2|V | = 2+2(|V1|+|V2|+|V3|) ≤ 2+|Ψ1|+|Ψ2|+|Ψ3|−6 = |Ψ|+2−4 = |Ψ|−2.

ut

Using the claim, we get that if A is the number of r-trifurcation points in
S, then 2A ≤ |Ψ| − 2 = A+ (|Ψ| −A)− 2. Since any vertex of Ψ that is not
a trifurcation point is a boundary point, we conclude 2A ≤ A+ |∂S| − 2 so
A < |∂S|.

All this was under the assumption that for every s ∈ S, also B(s, r) ⊂ S.
For general S, let S′ =

⋃
s∈S B(s, r). Then any r-trifurcation point in S is

a r-trifurcation point in S′. So it suffices to show that |∂S′| ≤ Dr|∂S|.

Now, if D is the maximal degree in G, then since for any x, |∂B(x, r)| ≤
D(D − 1)r, and since any point in ∂S′ is at distance exactly r from a point
in ∂S, we have that

|∂S′| ≤
∑
x∈∂S

|∂B(x, r − 1)| ≤ Dr · |∂S|.

ut



Chapter 7

Probabilistic Tools for
Product Spaces

7.1 Disjointly Occurring Events

Suppose x, y, z are three vertices in a graph G. We can ask about the events
x↔ y, x↔ z in percolation on G. This is equivalent to the event that there
exist open paths α : x → y and β : x → z. We can also consider a smaller
event: the event that there exists open paths α : x → y and β : x → z that
are disjoint. This is the canonical example of the two events x ↔ y and
x ↔ z occurring disjointly. That is, the events are required to both occur,
but each must be guarantied by a disjoint set of edges.

Let us give a formal definition. Recall that for a set of edges E ⊂ E(G) and

a vector η ∈ {0, 1}E(G), the cylinder of E and η is

Cη,E = {ω : ∀e ∈ E , ω(e) = η(e)} .

For an event A, a set of edges E, and a configuration ω ∈ {0, 1}E(G), we
say that E guaranties A at ω if Cω,E ⊂ A. In words, knowing that on the
edges in E the configuration is ω implies the event A.

Definition 7.1.1 For two events A,B define an event

A ◦B :=
{
ω : ∃ E ∩ E′ = ∅ , Cω,E ⊂ A,Cω,E′ ⊂ B

}
.
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That is, A ◦ B is the event that both A,B occur, but their occurrence is
guarantied by disjoint edge sets.

Exercise 7.1 Show that A ◦B ⊂ A ∩B. � � �

Exercise 7.2 Show that if A is increasing and B is decreasing then
A ◦B = A ∩B. � � �

Exercise 7.3 Show that if A ⊂ A′, B ⊂ B′ then A ◦B ⊂ A′ ◦B′. � � �

7.2 The BK Inequality

The following is a useful inequality proved by van den Berg and Kesten. It
has come to be known as the BK inequality.

Rob van den Berg

Theorem 7.2.1 (BK Inequality) Consider percolation on G. Let A,B ∈
FE be increasing events depending on some finite set of edges E ⊂
E(G), |E| <∞. Then,

Pp[A ◦B] ≤ Pp[A] · Pp[B].

Before proving the BK inequality, let us remark that if A was increasing
and B decreasing, then the inequality holds by Harris’ Lemma. Moreover,
with a much more complicated proof, Reimer proved that the assumption
of increasing is unnecessary:

Theorem 7.2.2 (Reimer’s Inequality) Consider percolation on G. Let
A,B ∈ FE be any events depending on some finite set of edges E ⊂
E(G), |E| <∞. Then,

Pp[A ◦B] ≤ Pp[A] · Pp[B].

The main observation that makes proving BK easier than proving Reimer’s
inequality is

Claim 7.2.3 If A,B are both increasing events, then A ◦ B has a simpler
form:

A ◦B = {ω + η : ω · η = 0 , ω ∈ A, η ∈ B} .
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Proof. We show two inclusions.

For “⊃”: Let ω · η = 0 and ω ∈ A, η ∈ B. Let E = ω−1(1), E′ = η−1(1).
Then ωη ≡ 0 implies E ∩ E′ = ∅. Because A,B are increasing,

Cω,E ⊂ A and Cη,E′ ⊂ B.

Also, since Cω+η,E = Cω,E and Cω+η,E′ = Cη,E′ ,

Cω+η,E ⊂ A and Cω+η,E′ ⊂ B.

So ω + η ∈ A ◦B.

For “⊂”: Let ξ ∈ A ◦ B. Let E ∩ E′ = ∅ be such that Cξ,E ⊂ A and
Cξ,E′ ⊂ B. Let

ω(e) = 1{e∈E}ξ(e) + 1{e 6∈E∪E′}ξ(e) and η(e) = 1{e∈E′}ξ(e).

So by definition ω + η = ξ and ω · η = 0. Note that ω ∈ Cξ,E ⊂ A and
η ∈ Cξ,E′ ⊂ B. ut

Exercise 7.4 Show that if A,B are increasing, then A ◦B is increasing.
� � �

Béla Bollobás

Proof of the BK inequality (Bollobás & Leader). The proof is by induction
on the size of the edge set E ⊂ E(G) for which A,B ∈ FE .

The case where |E| = 1 is simple, because if A,B ∈ F{e} are increasing
non-trivial events, then A = B = 1{e is open }. Thus, A ◦B = ∅.

Suppose that |E| > 1. Remove an edge e from E, and let E′ = E \ {e}. For
any event F ∈ FE and j ∈ {0, 1} let Fj ∈ FE′ be defined by

Fj = {ω : ωj,e ∈ F} .

(Recall that ωj,e(e
′) = 1{e′=e}j + 1{e′ 6=e}ω(e′).)

Let D = A ◦B.

Claim 1. Aj , Bj are increasing for j ∈ {0, 1}. Indeed, if Aj 3 ω ≤ η, then
ωj,e ∈ A. We always have ηj,e ≥ ωj,e. Since A is increasing, ηj,e ∈ A, which
gives η ∈ Aj .
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Claim 2. D0 ⊂ A0 ◦B0. (Actually, equality holds, but this will suffice.)

If ξ ∈ D0 then ξ0,e = ω+η for ω·η = 0 and ω ∈ A, η ∈ B. So ω(e) = η(e) = 0,
and ω ∈ A0, η ∈ B0. So ξ0,e ∈ A0◦B0. But A0◦B0 is increasing, and ξ ≥ ξ0,e,
so ξ ∈ A0 ◦B0.

Claim 3. D1 ⊂ (A0 ◦ B1) ∪ (A1 ◦ B0). (Actually, equality holds, but this
will suffice.)

If ξ ∈ D1, then ξ1,e = ω + η for ω · η = 0 and ω ∈ A, η ∈ B. Thus,
either ω(e) = 1 = 1 − η(e) or η(e) = 1 = 1 − ω(e). In the first case,
ω1,e = ω ∈ A, η0,e = η ∈ B and in the second case ω0,e ∈ A, η1,e ∈ B. So
either ω ∈ A1, η ∈ B0 or ω ∈ A0, η ∈ B1. Thus, ω+η ∈ (A0 ◦B1)∪(A1 ◦B0).

Now, if ξ(e) = 1 then ξ = ξ1,e = ω + η and we are done. If ξ(e) = 0 then
ξ = ω0,e + η0,e and ω0,e · η0,e = 0. So

ξ ∈ A0 ◦B0 ⊂ A1 ◦B0 ∩A0 ◦B1.

Imre Leader

With these claims, we continue: We have that A0 ⊂ A1, B0 ⊂ B1. By Claim
2 and by induction,

P[D0] ≤ P[A0] · P[B0]. (7.1)

By Claim 3, Claim 1 and induction

P[D1] ≤ P[A1 ◦B1] ≤ P[A1] · P[B1]. (7.2)

Claim 2 tells us that

D0 ⊂ (A0 ◦B1) ∩ (A1 ◦B0),

so with Claim 3,

P[D0] + P[D1] ≤ P[(A0 ◦B1) ∩ (A1 ◦B0)] + P[(A0 ◦B1) ∪ (A1 ◦B0)]

= P[A0 ◦B1] + P[A1 ◦B0] ≤ P[A0] · P[B1] + P[A1] · P[B0].
(7.3)

Finally,

P[A] · P[B] = ((1− p)P[A0] + pP[A1]) · ((1− p)P[B0] + pP[B1])

= (1− p)2 · P[A0] · P[B0] + (1− p)p · (P[A0] · P[B1] + P[A1] · P[B0]) + p2 · P[A1] · P[B1]

≥ (1− p)2 P[D0] + (1− p)p (P[D0] + P[D1]) + p2 P[D1]

= (1− p)P[D0] + pP[D1] = P[D].

ut



7.3. RUSSO’S FORMULA 51

7.3 Russo’s Formula

Grigory Margulis

Another useful tool is a formula discovered by Margulis and independently
by Russo. It is classically dubbed Russo’s formula in the literature.

Suppose X : {0, 1}E(G) → R is some random variable. Recall the definition
ωj,e(e

′) = 1{e′ 6=e}ω(e′) + 1{e′=e}j for j ∈ {0, 1}. Define the derivative of X
at e, denoted ∂eX to be the random variable

∂eX(ω) = X(ω1,e)−X(ω0,e) = (X1,e −X0,e)(ω).

The expectation E[∂eX] is called the influence of e on X.

Exercise 7.5 Let A be an event. We say that an edge e is pivotal in ω
for A if for ω ∈ A,ω + δe 6∈ A or ω 6∈ A,ω + δe ∈ A. Here

(ω + δe)(e
′) = 1{e′ 6=e}ω(e′) + 1{e′=e}(1− ω(e))

flips the value of ω at e.

That is, e is pivotal in ω for A if flipping the state of the edge e changes
whether ω is in A.

• Show that

{ω : e is pivotal in ω for A } = A1,e4A0,e,

where Aj,e = {ω : ωj,e ∈ A}.

• Show that if A is increasing

E[∂e1A] = P[{ω : e is pivotal in ω for A }].

� � �

Theorem 7.3.1 (Russo’s Formula) For any random variable that depends
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Figure 7.1: Two examples of configurations ω with edges that are pivotal in
ω for the event of crossing the rectangle from left to right. On the left, blue
edges are closed, and are all pivotal. On the right, red edges are all open,
and are all pivotal.

on finitely many edges, X ∈ FE , |E| <∞,

d

dp
Ep[X] =

∑
e∈E

Ep[∂eX].

Lucio Russo

Proof. We will in fact prove something stronger. Let E = {e1, . . . , en}. For
any vector of probabilities p = (p1, . . . , pn) ∈ [0, 1]n consider the probabil-
ity measure Pp (with expectation Ep) for which the edge states ω(ej) are
all independent Bernoulli random variables, with mean pj for the edge ej .
Define a function f : [0, 1]n → R by

f(p) = Ep[X].

We will show that
∂

∂xj
f(p) = Ep[∂ejX].

Russo’s formula above then follows by the chain rule, and taking p1 = · · · =
pn = p.

Let U1, . . . , Un be independent uniform-[0, 1] random variables, and let Ωp :
E → {0, 1} be defined by

Ωp(ej) = 1{Uj≤pj}.

So Ωp has the law of Pp. With this coupling, for any j, and small ε,

f(p + δjε)− f(p) = E[X(Ωp+δjε)−X(Ωp)].
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If Uj 6∈ (pj , pj + ε] the Ωp+δjε = Ωp. Also, if Uj ∈ (pj , pj + ε] then

X(Ωp+δjε) = X1,ej (Ωp) and X(Ωp) = X0,ej (Ωp).

So by independence,

f(p + δjε)− f(p) = E[X1,ej (Ωp)1{Uj∈(pj ,pj+ε]}]− E[X0,ej (Ωp)1{Uj∈(pj ,pj+ε]}] = ε · Ep[∂ejX]

We conclude

∂

∂xj
f(p) = lim

ε→0

f(p + δjε)− f(p)

ε
= Ep[∂ejX].

ut



Chapter 8

The Sub-Critical Regime

8.1 Mean Component Size

An interesting quantity to consider is the typical size of a connected compo-
nent in the percolation cluster. Recall that C(x) is the connected component
of x. We will use the notation ∂n(x) = B(x, n) \ B(x, n − 1) to denote the
sphere of radius n; that is, all points at graph distance exactly n from x.

Definition 8.1.1 For p ∈ (0, 1) and p-percolation on a graph G, define

χG,x(p) = Ep[|C(x)|].

X χG,x(p) may be infinite. It is immediate that χG,x(p) = ∞ for all p >

pc(G).

Suppose that
Pp[x↔ ∂n(x)] ≤ e−λn

for some λ > 0. Then,

χx(p) =

∞∑
n=0

Ep[|C(x) ∩ ∂n(x)|] ≤
∞∑
n=0

|∂n(x)| · e−λn.

So if the graph G is such that the spheres around x grow sub-exponentially
(for example, this happens in Zd, where the balls grow polynomially), then
χx(p) <∞.

54
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The following was first proved by Hammersley. We prove it using a much
simpler argument, that utilizes the BK inequality.

Lemma 8.1.2 Suppose G is a transitive graph (e.g. Zd). If χ(p) < ∞
then the diameter of C(x) has an exponentially decaying tail. That is,
there exists λ > 0 such that

Pp[x↔ ∂n(x)] ≤ e−λn.

Proof. The main observation is that for n ≥ m ≥ 1,

{x↔ ∂n+m(x)} ⊂
⋃

y∈∂m(x)

{x↔ y} ◦ {y ↔ ∂n(y)} .

Indeed, let ω ∈ {x↔ ∂n+m(x)}. So there exists an open (in ω) path γ that
goes from x to ∂n+m(x). By loop-erasing, we can get a simple path γ′ that is
a sub-path of γ (so is open in ω), and that goes from x to ∂n+m(x). If we take
y ∈ ∂m(x) to be the first point of γ′ on ∂m(x), then γ′ is composed of two
disjoint paths, one from x to y and one from y to ∂n+m(x). Since dist(x, y) =
m, there are two disjoint open (in ω) paths, one connecting x to y and one
connecting y to distance at least n from y. So ω ∈ {x↔ y} ◦ {y ↔ ∂n(y)}.

We now apply the BK inequality to get for any n ≥ m ≥ 1,

Pp[x↔ ∂n+m(x)] ≤
∑

y∈∂m(x)

Pp[x↔ y] · Pp[y ↔ ∂n(y)]

≤ Ep[|C(x) ∩ ∂m(x)|] · sup
y∈∂m(x)

Pp[y ↔ ∂n(y)].

Since ∞∑
m=0

Ep[|C(x) ∩ ∂m(x)|] = χ(p) <∞,

we have that there exists m large enough so that Ep[|C(x) ∩ ∂m(x)|] ≤ 1
2 .

Thus,

sup
x

Pp[x↔ ∂n+m(x)] ≤ 1
2 · sup

x
Pp[x↔ ∂n(x)].

We conclude that

sup
x

Pp[x↔ ∂n(x)] ≤ 2−bn/mc.

ut
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If one examines the proof, it can be noted that we only required that for
some m ≥ 1, there exists a uniform (in x) bound on Ep[|C(x)∩∂m(x)|] which
is strictly less than 1. Thus, we have actually shown,

Lemma 8.1.3 Let G be a graph. Consider percolation on G, and assume
that there exists α < 1 and m ≥ 1 such that for all x ∈ G,

Ep[|C(x) ∩ ∂m(x)|] ≤ α.

Then, for any x ∈ G and any n,

Pp[x↔ ∂n(x)] ≤ αbn/mc.

8.2 Menshikov and Aizenman-Barsky

Our goal is to prove that in the sub-critical regime, the probability of x ↔
∂n(x) decays exponentially. As we have seen above, it suffices to show that
for all p < pc, the expected size of C(x) is finite.

A remark concerning critical points: Instead of pc we could have defined the
critical point

pT = pT (G) = inf {p : Ep[|C(x)|] =∞} .

It is simple that pT ≤ pc.

Menshikov and Aizenman & Barsky proved that for all p < pc, Ep[|C(x)|] <
∞, which implies pT ≥ pc, and consequently pT = pc. By Hammersley’s
argument above, this implies that there is exponential decay of the radius
of C(x) in the sub-critical regime.

Menshikov’s method is slightly less general than Aizenman-Barsky. With a
subtle bootstrapping argument, Menshikov shows that for p < pc, Pp[x ↔
∂n(x)] ≤ exp

(
−λn(log n)−2

)
. This implies that if |∂n(x)| = O(eo(n(logn)−2))

(for example, this holds in Zd) then pT = pc and there is exponential decay
of the radius tail.

Aizenman & Barsky’s method is more general, and does not require growth
assumptions on the graph metric. Moreover, it holds in a wider generality
than percolation, although we do not detail that here.
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Recently, Duminil-Copin & Tassion provided a more elementary and “cleaner”
argument, which is in the next section.

We turn to the proof of the Aizenman-Barsky theorem.

8.3 Differential Inequalities

In order to understand the relation between pc and the mean component
size, we introduce the following augmentation of our percolation process:

Color the vertices of G randomly and independently, setting each vertex
to be green with probability ε > 0, independent of the percolation. Let
Pp,ε,Ep,ε denote the probability measure and expectation with respect to
the product of p-percolation and green vertices in G. We denote the random
set of green vertices Γ.

We fix some root vertex 0 ∈ G and let C = C(0). Also, let Cr(x) = C(x) ∩
B(0, r) and Cr = Cr(0).

Define
θr(p, ε) = Pp,ε[Cr ∩ Γ 6= ∅],

θ(p, ε) = Pp,ε[C ∩ Γ 6= ∅] = Pp,ε[0↔ Γ],

χ(p, ε) = Ep,ε[|C| · 1{06↔Γ}].

Exercise 8.1 Show that

θr(p, ε) = 1−
∞∑
n=1

P[|Cr| = n](1− ε)n,

θ(p, ε) = 1−
∞∑
n=1

P[|C| = n](1− ε)n,

χ(p, ε) =

∞∑
n=1

P[|C| = n] · n(1− ε)n.

Deduce that

χ = (1− ε)∂θ
∂ε
,
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∂θr
∂ε

=
∞∑
n=1

P[|Cr| = n]n(1− ε)n−1.

� � �

Exercise 8.2 Show that as r →∞,

θr ↗ θ and
∂θr
∂p
→ ∂θ

∂p
and

∂θr
∂ε
→ ∂θ

∂ε
.

� � �

Exercise 8.3 Prove that

P[|Cr ∩ Γ| = 1] = ε
∂θr
∂ε

.

� � �

The most complicated estimate we have is the following:

Lemma 8.3.1 We have

P[|Cr ∩ Γ| ≥ 2] ≤ (θr)
2 + p · θ2r ·

∂θr
∂p

Proof. For an edge e, we write Cr,e for the component of 0 in B(0, r) when e
is removed; that is Cr,e(ω) = Cr(ω0,e). Let Ax be the event that Cr(x)∩Γ 6= ∅.
So θr = P[A0]. Also,

P[Ax] ≤ P[C(x) ∩B(x, 2r) ∩ Γ 6= ∅] = θ2r.

Step 1. Let e = x ∼ y be some edge in B(x, r). The main effort is
to bound from above the probability of the event Bxy ∩ Ay ◦ Ay where
Bxy := {x ∈ C, Cr,e ∩ Γ = ∅}. On this event, we have that there must exist
three disjoint open paths, one α : 0 → x, and the other two, β, γ : y → Γ,
such that β, γ do not intersect Cr,e.

(*) Note that Bxy ∩ Ay ◦ Ay implies that {e is pivotal for Cr ∩ Γ 6= ∅} ◦ Ay.
We could bound this using Reimer’s inequality, but let us circumvent this
in order to be self contained.

Let Σe be the set of all subsets C of B(x, r) such that P[Bxy, Cr,e = C,Ay] >
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0. For any such C ∈ Σe, we have that

Bxy ∩ {Cr,e = C} ∩Ay ◦Ay = Bxy ∩ {Cr,e = C} ∩AC,y(2)

where

AC,y(2) =
{

there exist disjoint open paths β, γ : Γ→ y such that

both γ, β do not intersect E(C)
}

Similarly,

Bxy ∩ {Cr,e = C} ∩Ay = Bxy ∩ {Cr,e = C} ∩AC,y(1),

where

AC,y(1) =
{

there exists an open path β : Γ→ y such that β does not intersect E(C)
}

Thus, if we use PC to denote the percolation measure on the subgraph
B(0, r) \ E(C) then, because the events AC,y(j) depend only on edges not
in E(C) and Bxy, {Cr,e = C} depend only on edges in E(C), we have

P[Bxy,Cr,e = C,Ay ◦Ay] = P[Bxy, Cr,e = C] · P[AC,y(2)]

= P[Bxy, Cr,e = C] · PC [Ay ◦Ay]
≤ P[Bxy, Cr,e = C] · P[AC,y(1)] · P[Ay]

≤ P[Bxy, Cr,e = C,Ay] · θ2r, (8.1)

where we have used the BK inequality for the measure PC . Summing over
all C ∈ Σe, we get that

P[Bxy, Ay ◦Ay] ≤ θ2r · P[Bxy, Ay].

The event Bxy ∩ Ay implies that e is pivotal for Cr ∩ Γ 6= ∅. Summing over
possible choices for e, using Russo’s formula we have

P[∃ x ∼ y : Bxy, Ay ◦Ay] ≤ θ2r ·
∂θr
∂p

. (8.2)

Step 2. Now, consider the event that |Cr ∩ Γ| ≥ 2 and (A0 ◦A0)c. That is,
0 is connected to at least two vertices in Γ in B(x, r), but there do not exist
two disjoint paths from Γ to 0. Suppose that a, b are different two vertices
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x

y

Cr,e
0

0

A0 ◦A0

Cr,e ∩ Γ = ∅
Ay ◦Ay

x ∈ Cr

in Γ∩Cr. Let α : a→ 0 be an open path. Note that if b = 0, then we would
have the event A0 ◦ A0 along the empty path and the path α. So we have
assumed that a, b 6= 0.

Now, let e be the first edge along α : a → 0 such that removing e would
disconnect 0 from Γ; i.e. Cr,e ∩ Γ = ∅. If such an edge does not exist, then
removing the whole path α : a → 0, we still remain with 0 connected to Γ,
which gives another disjoint path connecting Γ to 0. This contradicts our
assumption that (A0 ◦A0)c.

So we fix the first edge e = x ∼ y on α : a→ 0 such that Cr,e ∩ Γ = ∅.

• By assumption, α is open, so e is open.

• e disconnects 0 from Γ so Cr,e ∩ Γ = ∅.

• x ∈ Cr and y is connected to Γ by the initial part of α

• Any path from Γ to 0 must pass through e first, so Ay ◦Ay.

We conclude that

{|Cr ∩ Γ| ≥ 2} ∩ (A0 ◦A0)c ⊂ {∃ e = x ∼ y : e is open , Bxy, Ay ◦Ay} .

Note that the event Bxy ∩ Ay ◦ Ay is independent of the state of e. So by
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(8.2),

P[|Cr ∩ Γ| ≥ 2, (A0 ◦A0)c] ≤ p · θ2r ·
∂θr
∂p

.

The BK inequality gives that

P[A0 ◦A0] ≤ (P[A0])2 ≤ (θr)
2,

which completes the lemma since

P[|C ∩ Γ| ≥ 2] ≤ P[A0 ◦A0] + P[|C ∩ Γ| ≥ 2, (A0 ◦A0)c].

ut

Lemma 8.3.2 If degG is the degree in G, then

(1− p)∂θr
∂p
≤ degG(1− ε)θ2r

∂θr
∂ε

.

Proof. As in Lemma 8.3.1, for an edge e = x ∼ y we consider the event
Bxy = {x ∈ C, Cr,e ∩ Γ = ∅}. Note that if e is pivotal for Cr ∩Γ 6= ∅, then we
must have that Bxy, Ay. By partitioning over possibilities for Bxy, Cr,e = C,
just as in (8.1) we have that

(1− p)P[e is pivotal for Cr ∩ Γ 6= ∅] = P[e is closed and pivotal for Cr ∩ Γ 6= ∅]
≤ P[e is closed , Bxy, Ay] ≤ P[e is closed , Bxy] · θ2r.

If e is closed, then Cr,e = Cr, so summing over e with Russo’s formula,

(1− p)∂θr
∂p
≤ θ2r ·

∑
e=x∼y

P[e is closed , Bxy]

≤ θ2r ·
∑
x∼y

P[x ∈ Cr, Cr ∩ Γ = ∅] ≤ θ2r · degG ·E[|Cr| · 1{Cr∩Γ=∅}].

The proof is completed since

E[|Cr| · 1{Cr∩Γ=∅}] =
∞∑
n=1

P[|Cr| = n]n(1− ε)n = (1− ε)∂θr
∂ε

.

ut

To summarize this section, combining Exercise 8.3 and Lemmas 8.3.1 and
8.3.2, we have the following differential inequalities.
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Lemma 8.3.3 For degG the degree in G,

θ ≤ ε∂θ
∂ε

+ θ2 + p · θ∂θ
∂p

and

(1− p)∂θ
∂p
≤ degG(1− ε) · θ∂θ

∂ε

Proof. Use

P[Cr ∩ Γ 6= ∅] ≤ P[|Cr ∩ Γ| = 1] + P[|Cr ∩ Γ| ≥ 2].

Then, combine Exercise 8.3 and Lemmas 8.3.1 and 8.3.2, and send r →∞.
ut

8.4 The Aizenman-Barsky Theorem

Theorem 8.4.1 Let p < pc(G) for a transitive graph G. Then,

Ep[|C(x)|] <∞.

Proof. Let p < q < pc. Note that for any s ∈ [p, q], θ(s, ε) ≤ θ(q, ε) → 0
as ε → 0. Let η > 0 be small enough so that for all s ∈ [p, q] and ε < η,
θ(s, ε) ≤ 1

2 .

Recall that

∂θ
∂ε (s, ε) = χ(s, ε)(1− ε)−1 ≥ P[|C| = 1] ≥ (1− p)degG > 0.

So θ is strictly increasing in ε, and so we can invert it on [0, η] and write
fs(x) = ε for the unique ε such that θ(s, ε) = x. This implies that f ′s(θ(s, ε))·
∂θ
∂ε (s, ε) = 1, for all ε < η and s ∈ [p, q]. Thus, for all s ∈ [p, q] and x ≤ 1

2 ,
we get that f ′s(x) ≤ (1− q)− degG <∞.

Recall our differential inequalities from Lemma 8.3.3. Combining them both
we have that for C = sups∈[p,q]

s degG
1−s = q degG

1−q ,

θ ≤ ∂θ

∂ε
·
(
ε+ Cθ2

)
+ θ2,
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For x ≤ 1
2 this is the same as

x ≤ (f ′s(x))−1 ·
(
fs(x) + Cx2

)
+ x2

which becomes
1
xf
′
s(x)− fs(x)

x2
≤ C + f ′s(x).

Since f ′s is uniformly bounded by (1− q)− degG we obtain

d

dx

(
1
xfs
)

(x) = 1
xf
′
s(x)− fs(x)

x2
≤ C(q).

Integrating over an interval [y, x] for small enough y < x (in fact x ≤ 1
2), we

have that 1
xfs(x)− 1

yfs(y) ≤ C(q)(x− y).

Now, assume for a contradiction that Ep[|C(x)|] = ∞. Since θ(p) = 0 this
implies that

f ′p(0) = lim
ε→0

f ′p(θ(p, ε)) = lim
ε→0

1− ε
χ(p, ε)

= 0.

Thus, we may send y → 0 and get 1
xfp(x) ≤ C(q)x, which is to say that for

all ε < η,

θ(p, ε) ≥
√

ε
C(q) .

Thus, for any ε < η,

lim sup
ε′→0

log θ(q,ε)
θ(p,ε′)

log ε
ε′
≤ 1

2
· lim sup

ε′→0

log C(q)
ε′

log ε
ε′

=
1

2
.

We use this in the first inequality

θ ≤ ε∂θ
∂ε

+ θ2 + pθ
∂θ

∂p
,

which may be re-written as

0 ≤ ∂

∂ε
log θ +

1

ε
· ∂
∂p

(pθ − p) .

We now integrate this inequality over [p, q] and [ε′, ε] for 0 < ε′ < ε < η.
We use the fact that θ(s, ξ) is maximized on [p, q] × [ε′, ε] at (s, ξ) = (q, ε)
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and minimized at (s, ξ) = (p, ε′).

0 ≤
∫ q

p
log

θ(s, ε)

θ(s, ε′)
ds+

∫ ε

ε′

qθ(q, ξ)− q − pθ(p, ξ) + p

ξ
dξ

≤ (q − p) log
θ(q, ε)

θ(p, ε′)
+
(
qθ(q, ε)− pθ(p, ε′) + p− q

)
· log ε

ε′ .

Dividing by log ε
ε′ , we get taking ε′ → 0 that

0 ≤ 1
2(q − p) + qθ(q, ε)− pθ(p, 0) + p− q = −1

2(q − p) + qθ(q, ε).

Another limit as ε→ 0 gives that

0 < 1
2q (q − p) ≤ θ(q, 0) = θ(q),

a contradiction! ut

8.5 The Duminil-Copin & Tassion argument

Quite recently, Duminil-Copin & Tassion provided a much more elementary
argument for the exponential decay of long connections (what is sometimes
called sharpness of the phase transition).

Recall the definition of connections inside a given set: For a subset S ⊂ V

we write x
S↔ y (resp. A

S↔ B) if there exists an open path, only using edges
contained in S, that connects x, y (resp. some x ∈ A, y ∈ B).

Also, recall the edge boundary of S, defined as

∂eS = {(x, y) : S 3 x ∼ y 6∈ S}.

Hugo Duminil-Copin

Vincent Tassion

Let S ⊂ V be a finite subset containing o. Define

ϕp(S) = p
∑

(x,y)∈∂eS
Pp[o

S↔ x].

So ϕp(S) is p times the expected number of edges in the edge boundary ∂eS
of S, that are connected to o inside S.

Let Br = Br(o) be the ball of radius r > 0 around o in the graph. Let r > 0
be large enough so that S ∪ ∂S ⊂ Br. Thus, if y ∼ S then y ∈ Br.



8.5. THE DUMINIL-COPIN & TASSION ARGUMENT 65

For all r > 0 define

χ(r, p) =
∑
x∈Br

Pp[o
Br↔ x].

Exercise 8.4 Show that for any p ∈ [0, 1],

lim
r→∞

χ(r, p) = χ(p) = Ep |C(o)|.

� � �

Lemma 8.5.1 Let A,B, S be subsets such that o ∈ S, B ∩ S = ∅ and
|S| <∞. Then,

Pp[o
A↔ B] ≤

∑
(x,y)∈∂eS

p · Pp[o S↔ x] · Pp[y A↔ B].

Proof. If o = x0, x1, . . . , xt ∈ B is an open path contained in A from o to B
(i.e. all edges xi ∼ xi+1 are open and all xi ∈ A), then for k being the first

index for which xk+1 6∈ S we have that o
S↔ xk, and xk ∼ xk+1 is open, and

xk+1
A↔ B. Moreover, all these events are disjointly occurring as may be wit-

nessed by the disjoint sets of the edges of {x0, . . . , xk}, {xk, xk+1}, {xk+1, . . . , xt}.
In other words,

{o A↔ B} ⊂
⋃

(x,y)∈∂eS
{o S↔ x} ◦ {y A↔ B} ◦ {x ∼ y is open }.

The conclusion follows by the BK inequality, ut

Lemma 8.5.2 Let G be a transitive graph. Suppose that o ∈ S for some
finite subset S. If ϕp(S) < 1 then Ep |C(o)| ≤ |S|

1−ϕp(S) <∞.

Proof. Let S be a finite subset such that o ∈ S, ϕp(S) < 1.

For any vertex y define

χy;o(r, p) =
∑

v∈Br(o)
Pp[y

Br(o)↔ v].
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Note that χy;o(r, p) = 0 if y 6∈ Br(o). For any r let ur ∈ Br(o) be the vertex
for which χur;o(r, p) = maxy χy;o(r, p). Of course, χur;o(r, p) ≥ χo;o(r, p) =
χ(r, p)→ χ(p).

For every vertex u let ψu be an automorphism of G mapping o to u (recall
that G is assumed to be transitive). If v ∈ Br(o) \ ψuS then by Lemma
8.5.1,

Pp[u
Br(o)↔ v] =

∑
(x,y)∈∂eψuS

p · Pp[u ψuS↔ x] · Pp[y
Br(o)↔ v],

so that summing over v ∈ Br(o) \ ψuS we have∑
v∈Br(o)\ψuS

Pp[u
Br(o)↔ v] ≤ ϕp(S) ·max

y
χy;o(r, p) ≤ ϕp(S) · χur;o(r, p).

Since Pp[u
Br(o)↔ v] ≤ 1 always, we have altogether that

χu;o(r, p) =
∑

v∈Br(o)
Pp[u

Br(o)↔ v] ≤ |S|+ ϕp(S) · χur;o(r, p).

Choosing u = ur we arrive at the inequality

χ(r, p) ≤ χur;o(r, p) ≤
|S|

1− ϕp(S)
.

Taking r →∞ proves the lemma. ut

Lemma 8.5.3 For any r > 0 and p ∈ (0, 1),

∂
∂p Pp[o↔ ∂Br] ≥

1

p(1− p) · inf
o∈S⊂Br

ϕp(S) ·
(

1− Pp[o↔ ∂Br]
)
.

Proof. Consider the event {o↔ ∂Br}. Let P be the (random) set of pivotal
edges for this event. Also, set C = {x ∈ Br : x 6↔ ∂Br}. One notes that

if C = S then P = {{x, y} ∈ E : (x, y) ∈ ∂eS : x
S↔ o}. Also, o 6↔ ∂Br

if and only if o ∈ C ⊂ Br. Let E = {e ∈ E(G) : e ∩ Br 6= ∅} be the set of
edges intersecting the ball of radius r. So P ⊂ E always. We compute:∑

e∈E
Pp[e ∈ P , o 6↔ ∂Br] =

∑
e∈E

∑
o∈S⊂Br

Pp[e ∈ P , C = S]

=
∑

o∈S⊂Br

∑
(x,y)∈∂eS

Pp[o
S↔ x , C = S].



8.5. THE DUMINIL-COPIN & TASSION ARGUMENT 67

When S ⊂ Br, the event C = S depends only on edges not contained in S.

So the events {o S↔ x}, {C = S} are independent. Thus,∑
e∈E

Pp[e ∈ P , o 6↔ ∂Br] =
∑

o∈S⊂Br

∑
(x,y)∈∂eS

Pp[o
S↔ x] · Pp[C = S]

=
∑

o∈S⊂Br
Pp[C = S] · 1

pϕp(S)

≥ Pp[o 6↔ ∂Br] · 1
p inf
o∈S⊂Br

ϕp(S).

The proof is now complete since Russo’s formula tells us that∑
e⊂Br

Pp[e ∈ P , o 6↔ ∂Br] = (1− p) ∂∂p Pp[o↔ ∂Br],

where we have used that o↔ ∂Br is increasing. ut

Alternative proof of the Aizenman-Barsky Theorem. Define

qc = sup{p : ∃ S ⊂ V , |S| <∞ , ϕp(S) < 1}.

Lemmas 8.1.2 and 8.5.2 show that if there exists a finite set S ⊂ V containing
o such that ϕp(S) < 1, then Pp[o↔ ∂Br] decays exponentially. This implies
that qc ≤ pc.

We now show that for any p > qc we have θ(p) > 0, so qc = pc.

Let f(p) = Pp[o 6↔ ∂Br]. By Lemma 8.5.3, if p > qc then

∂
∂p log f(p) ≤ − 1

p(1−p) .

Thus, integrating over (qc, p) we have

log f(qc)
f(p) ≥

∫ p

qc

1
ξ(1−ξ)dξ = log p(1−qc)

qc(1−p) ,

which implies that f(p) ≤ qc
1−qc ·

1−p
p . Hence,

Pp[o↔ ∂Br] ≥ 1− qc
1−qc ·

1−p
p =

p(1− qc)− qc(1− p)
p(1− qc)

=
p− qc
p(1− qc)

.

For any p > qc, the left hand side is positive independent of r, so taking
r →∞, θ(p) ≥ p−qc

p(1−qc) > 0 for any p > qc. ut
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The behavior of χ at pc can also be deduced. The next result was first noted
by Aizenman & Newman.

Proposition 8.5.4 At p = pc we have that χ(pc) = ∞. (Thus, p < pc if
and only if χ(p) <∞.)

Proof. In the Duminil-Copin & Tassion proof of the Aizenman-Barsky The-
orem we showed that

pc = qc = sup{p : ∃ o ∈ S ⊂ V , |S| <∞ , ϕp(S) < 1}.

The set Φ = {p : ∃ o ∈ S ⊂ V , |S| < ∞ , ϕp(S) < 1} is an open set.
Indeed, since

X =
∑

(x,y)∈∂eS
1{

o
S↔x
}

is a random variable depending on only finitely many edges (only on the
edges in S and ∂eS), we have that p ·Ep[X] = ϕp(S) is a continuous function
of p. So

Φ =
⋃
|S|<∞
o∈S

{p : ϕp(S) < 1}

is open as a union of open sets.

This implies that pc = qc = sup Φ 6∈ Φ. Specifically, ϕpc(S) ≥ 1 for any
finite S 3 o.

We now have

∞ ≤
∑
r

ϕpc(Br(o)) =
∑
r

∑
(x,y)∈∂eBr(o)

pc · Ppc [o
Br(o)↔ x] ≤ Epc |C(o)| · degG

ut

8.6 Summary

Just to summarize, in this chapter we gave a few characterizations for pc in
transitive graphs.
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Theorem 8.6.1 Let G be a transitive graph. For a finite subset S contain-

ing a vertex o set ϕp(S) =
∑

(x,y)∈∂eS pPp[o
S↔ x]. Then, pc = pT = qc

where

pc = sup{p : θ(p) = 0}
pT = sup{p : χ(p) <∞}
qc = sup{p : ∃ o ∈ S ⊂ V , |S| <∞ , ϕp(S) < 1}

Moreover, at p = pc we have that χ(pc) = ∞ and ϕpc(S) ≥ 1 for any finite
S. The question if θ(pc) = 0 is one of the most important open questions in
probability.

We have also seen that χ(p) < ∞ implies that Pp[o ↔ ∂Br(o)] decays
exponentially. The phenomena that sub-critical long connections decay ex-
ponentially is sometimes called sharpness of the phase transition.



Chapter 9

Planar Percolation

9.1 Duality

Let G be a graph drawn in the plane. The dual of G, denoted Ĝ is the graph
whose vertices are the faces of G (including the infinite face if it exists). Two
faces are adjacent if they share an edge, so to every edge e in G we have
assigned a dual edge ê in Ĝ.

If ω ∈ {0, 1}E(G) then define the dual of ω to be

ω̂(ê) = 1− ω(e).

That is, a dual edge is open if and only if the corresponding primal edge is
closed.

We have already used duality to prove an upper bound for pc(Z2).

The following property of planar graphs is the key to most of the arguments
in planar percolation. It is not simple to rigorously write down the proof,
although the proof is pretty clear from the figure.

Proposition 9.1.1 Let G be a planar graph. Let x ∼ y be a specific edge
in E(G). Let x̂ ∼ ŷ be the dual of x ∼ y. Let ω ∈ {0, 1}E(G) be any
percolation configuration, and ω̂ its dual. Let G′ be the graph G with
the edge x ∼ y removed and let Ĝ′ be the graph Ĝ with the edge x̂ ∼ ŷ
removed. Then, either there exists a path α : x → y in G′ that admits
ω(ε) = 1 for all edges ε ∈ α, or there exists a path β : x̂ → ŷ in Ĝ′ that
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admits ω̂(ε̂) = 1 for all dual edges ε̂ ∈ β.

Let us prove a simpler version of this proposition, for Z2.

X Notation: A rectangle in Z2 is a set of the form [a, a′]× [b, b′]∩Z2. If R

is a rectangle, then ∂iR, the inner boundary of R, is the set of vertices just
inside R; i.e. ,

∂iR = {x ∈ R : ∃ y 6∈ R , x ∼ y} .

We also find it convenient to define the N,S,E,W boundaries: If R =
[a, a′]× [b, b′] ∩ Z2 where a, a′, b, b′ are all integers,

∂NR = [a, a′]×
{
b′
}
∩ Z2 ∂ER =

{
a′
}
× [b, b′] ∩ Z2,

and similarly for south and west.

For a rectangle R, we write (↔ R) for the event that there is an open path
crossing R from left to right; that is, the event that there exist x ∈ ∂WR, y ∈
∂ER, and a path γ : x → y inside R that is open. Similarly, (l R) denotes
the event that there is a crossing from top to bottom of R, that is from ∂NR
to ∂SR.

There are also two possible duals for a rectangle R: For a rectangle R =
[a, a′] × [b, b′] ∩ Z2 integers, let Rh be the horizontal dual, which is the

subgraph of Ẑ2 = (1
2 ,

1
2) + Z2, induced on the vertices

Rh = [a− 1
2 , b+ 1

2 ]× [a′ + 1
2 , b
′ − 1

2 ] ∩ Ẑ2.

Similarly, the vertical dual is

Rv = [a+ 1
2 , b− 1

2 ]× [a′ − 1
2 , b
′ + 1

2 ] ∩ Ẑ2.

The main duality observation is:

Proposition 9.1.2 Let R be a rectangle in Z2. Let ω be any percolation
configuration. Then, exactly one of the following holds: either ω ∈ (↔ R)
or ω̂ ∈ (l Rv).

Example 9.1.3 Let R be the rectangle [0, n+ 1]× [0, n] ∩ Z2.
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(a, b)

(a′, b′)

R

Rh

Figure 9.1: A rectangle in Z2 and its dual.

Figure 9.2: Two possibilities for exploration of the component of ∂WR.
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Note that Rv is a rotated version of R, and the symmetry gives that

Pp[↔ R] = P1−p[l Rv].

Since these events are a partition of the whole space,

Pp[↔ R] + P1−p[↔ R] = Pp[↔ R] + Pp[l Rv] = 1.

Taking p = 1/2 gives P1/2[↔ R] = 1
2 . 454

9.2 Zhang’s Argument and Harris’ Theorem

The following theorem was first proved by Harris in 1960. Zhang provided
a simple (and more general) argument later on.

Figure 9.3: The event A from Zhang’s argument.
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Theorem 9.2.1 For bond percolation on Z2, θ(1/2) = 0. Consequently,
pc(Z2) ≥ 1/2.

Proof. Assume for a contradiction that θ(1/2) > 0. So P1/2-a.s. there exists
a unique infinite component.

Let R be the n × n rectangle [−n, n] × [−n, n] ∩ Z2. Take n large enough
so that R intersects the infinite component with probability at least 1− 5−4

(as n→∞ this probability tends to 1).

Now, consider the event

AE =
{
ω : ω0,E(R) ∈ {∂ER↔∞}

}
.

That is, AE is the event that ∂ER is connected to the infinite component
by an open path that does not pass through R. Define AN , AS , AW simi-
larly. The rotation-by-π/2 symmetry implies that all these events have the
same probability. Moreover, since these are all increasing events, by Harris’
Lemma,

1− 5−4 ≤ P1/2[R↔∞] ≤ P1/2[AN ∪AS ∪AE ∪AW ]

= 1− P1/2[AcN ∩AcS ∩AcE ∩AcW ] ≤ 1− (1− P1/2[AE ])4

So P1/2[AE ] = P1/2[AW ] ≥ 4
5 .

Now, let R′ be the dual rectangle containing R; that is R′ = [−1
2 , n +

1
2 ] × [−1

2 , n + 1
2 ] ∩ Ẑ2. Define the events A′N , A

′
S , A

′
E , A

′
W analogously to

the above, for the rectangle R′ in the dual graph Ẑ2. Again we have that
P1/2[A′N ] = P1/2[A′S ] ≥ 4

5 .

Finally, consider the event A = AE ∩AW ∩A′N ∩A′S . We have that

P[Ac] ≤ P[AcE ] + P[AcW ] + P[(A′N )c] + P[(A′S)c] ≤ 4
5 ,

so P1/2[A] ≥ 1
5 > 0.

Moreover, the event A does not depend on edges inside R. Also, if we open
all edges in R, then together with the event A this implies that there exist

at least two infinite components in Ẑ2. This is because the union of E(R)
and the infinite paths from AE , AW is an open connected set of primal edges
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that separates the whole plane into two components. Since the dual infinite
paths from A′N , A

′
S start in different components of this separation, they

cannot connect in the dual graph. Otherwise, somewhere a dual open edge
would cross a primal open edge which is impossible by construction.

That is,

0 < 2−|E(R)| · 1
5 = P1/2[A,E(R) is open ]

≤ P1/2[ there are two infinite components in the dual Ẑ2]

But this last event must have probability 0 by the Burton-Keane Theorem.
ut

9.3 Kesten’s Theorem - A Modern Proof

We are now in position to prove Kesten’s remarkable theorem from 1980:

Theorem 9.3.1 Consider bond percolation on Z2. Then, for any p > 1
2 ,

θ(p) > 0. Consequently, pc(Z2) = 1
2 .

Proof. Let R be the n × (n + 1) rectangle, R = [0, n + 1] × [0, n] ∩ Z2. We
know by symmetry that P1/2[↔ R] = 1

2 , and specifically, uniformly bounded
away from 0 (as n→∞).

Suppose that 1
2 < pc. Then, by Aizenman-Barsky (5kg hammer to kill a

fly!), E1/2[|C(0)|] <∞, and

P1/2[x↔ ∂n(x)] ≤ e−cn,

uniformly in x, for all n. Thus,

P1/2[↔ R] ≤
∑

x∈∂WR
P1/2[x↔ ∂ER] ≤

∑
x∈∂ER

P1/2[x↔ ∂n(x)] ≤ ne−cn → 0.

This contradicts P1/2[↔ R] = 1
2 . ut

Kesten’s original proof that pc(Z2) ≤ 1/2 did not use Aizenman-Barsky,
which came later.
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9.4 Site Percolation and the Triangular Lattice

For pedagogical reasons, we move now to site percolation on the triangular
lattice.

In site percolation, the sample space is configuration of open and closed
vertices: {0, 1}G. The notations for connections, components, etc. are the
same, and we will add a super-script Ps

p,Es
p to specify site-percolation if

there is possibility of confusion.

We leave it to the reader to verify that all the general results apply to site
percolation as well: namely, Harris’ Lemma, BK inequality, Russo’s formula,
and the Aizenman-Barsky Theorem.

As for the triangular lattice, it is the lattice whose faces are equilateral
triangles. For definiteness, let us fix T to be the lattices whose vertices are

V (T) =
{

(x,
√

3y), (x+ 1
2 ,
√

3
2 (2y + 1)) : x, y ∈ Z

}
,

and edges that form equilateral triangles

(x, y) ∼ (x+ 1, y) and (x, y) ∼ (x+ 1
2 , y +

√
3

2 ).

The dual lattice of T is the tiling of R2 by regular hexagons, known as the
hexagonal lattice H. So site percolation on T is the same as coloring the
hexagons of H black and white randomly.

All of the results we have proved for bond percolation holds for site percola-
tion as well: Harris’ Lemma, Russo’s formula, the BK inequality, Aizenman-
Barsky, and in amenable graphs we have the uniqueness of the infinite com-
ponent (Aizenman-Kesten-Newman or Burton-Keane).

9.5 Critical Probability in Planar Site Percolation

Let us redo Zhang’s argument in the site percolation case. In fact, we will
first make some general definitions. We will find it convenient to identify R2

with C.

We consider percolation on the faces of H. For Zhang’s argument all we
require is some shape with symmetry. For example, in H we may take the
rhombus.
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Figure 9.4: Left: The triangular lattice T and part of its dual lattice, the
hexagonal (or honeycomb) lattice H. Right: Percolation on the faces of H
= site percolation on T.

Theorem 9.5.1 For percolation on the faces of the hexagonal lattice H
(or, equivalently, site percolation on the triangular lattice T), pc = 1

2 .
Moreover, θ(pc) = 0.

Proof. We start by proving that pc ≥ 1
2 . Assume for a contradiction that

θ(1/2) > 0. Let Rn be the rhombus of hexagons of side-length n centered
around the origin. Let ∂NER, ∂NWR, ∂SER, ∂SWR be the north-east, north-
west, south-east and south-west boundaries of the rhombus (corners are
shared by two boundaries). Let R◦ = R \ (∂NER ∪ ∂NWR ∪ ∂SER ∪ ∂SWR)
be the interior of R. For ξ ∈ {NE,NW,SE, SW} let Let

Aξ = {ω : ω0,R◦ ∈ {∂ξR↔∞}} .

This is the event that the corresponding boundary is connected to the infinite
component without using sites in R◦.

By flipping over the real and imaginary axis, we have that P[ANE] = P[ANW] =
P[ASE] = P[ASW]. Moreover, these are increasing events, and ANE ∪ ANW ∪
ASE ∪ASW = {R↔∞}. So by Harris’ Lemma,

P[R↔∞] = 1− P[∩ξAcξ] ≤ 1− (1− P[ANE])4,
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Or
P[ANE] ≥ 1− (1− P[R↔∞])1/4.

Now, by the assumption that θ(1/2) > 0, taking n to infinity, the probability
of R↔∞ tends to 1, and can be made as large as we wish. Thus, if it is at
least 1− 5−4, we get that P[ANE] ≥ 4

5 .

Here we get to the part where 1
2 is special. The above computation is

valid for any p > pc. But if θ(1/2) > 0 (or pc <
1
2), then we get for

any ξ ∈ {NE,NW, SE,SW}, that P[Aξ] ≥ 4
5 and P[A′ξ] ≥ 4

5 , where A′ξ =
{1− ω : ω ∈ Aξ} is the event that ∂ξ is connect to an infinite closed com-
ponent.

Thus, we conclude that for A = ANE ∩A′SE ∩ASW ∩A′NW,

P[Ac] ≤ P[AcNE] + P[(A′SE)c] + P[AcSW] + P[(A′NW)c] ≤ 4

5
.

So P[A] ≥ 1
5 . Let E be the event that all sites in R◦ are open. Since A

does not depend on the configuration of sites in R◦, we have that A,E are
independent, and

P[A,E] ≥ 2−|R
◦| · 1

5
> 0.

But A ∩ E implies that there exist at least two infinite closed (red) com-
ponents, on from ∂SE and one from ∂NW that cannot intersect each other
because the infinite open (black) component connected to R separates them.
This contradicts Aizenman-Kesten-Newman (uniqueness of the infinite com-
ponent in the amenable graph T).

The other direction uses the Aizenman-Barsky Theorem (exponential decay
of radius of open clusters).

Assume for a contradiction that pc >
1
2 . Let C be the set of corners of R. Let

A be the event that there is an open (black) path in R connecting ∂NWR\C
to ∂SER \ C. Let B be the event that there is a closed (red) path in R
connecting ∂SWR\C to ∂NER\C. We have already seen that P[A]+P[B] = 1.
However, the symmetry of the rhombus, together with the fact that both
red and black have the same probability gives, P1/2[A] = P1/2[B] = 1

2 . Most
importantly, this is uniformly bounded away from 0 as n→∞.

However, for large n, by Aizenman-Barsky,

P[A] ≤ P[∃x ∈ ∂NWR : x↔ ∂SER] ≤ nP[x↔ ∂n(x)] ≤ ne−cn → 0,
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∂NER

∂NWR

∂SWR ∂SER

R◦

Figure 9.5: The rhombus R (n = 6).

a contradiction. ut



Chapter 10

The Cardy-Smirnov Formula

10.1 Cardy-Smirnov Formula

If h ∈ δH is some hexagon, we may identify it with an open set in C - namely
the open hexagon itself. If h ∼ h′ are adjacent hexagons in δH, we identify
the edge h ∼ h′ with the boundary between h and h′ in C.

Let D be a simply connected pre-compact domain in C and let a, b, c, d be
four points on the boundary of D, in counter-clockwise order. That is, the
boundary of D is given by a Jordan curve γ : [0, 1] → C, and γ(ta) =
a, γ(tb) = b, γ(tc) = c, γ(td) = d for some ta < tb < tc < td in (0, 1). For
ξ, ζ ∈ {a, b, c, d}, we denote by (ξ, ζ)D the part of γ strictly between ξ and
ζ; e.g. (a, b) = γ(ta, tb).

Given a percolation configuration ω ∈ {0, 1}H, we want to “color” D̄ in
such a way that the ω-open hexagons are black, ω-closed hexagons are red,
edges between open (resp. closed) hexagons are black (resp. red), and the
boundary ∂D is colored black on (a, b)∪ (c, d) and red on (b, c)∪ (d, a). This
is done as follows.

For all z ∈ C, there are three disjoint possibilities: z is in exactly on hexagon
of δH, z is on the boundary between two adjacent hexagons of δH, or z is
on the vertex where three adjacent hexagons of δH intersect.

Define a function fω : C → {0, 1,−1}. (We think of fω(z) = 1 meaning “z
is black”, fω(z) = 0 meaning “z is red”, and fω(z) = −1 meaning “z is not
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colored” or “z is white”.) For z in exactly on hexagon h set fω(z) = ω(h).
If z is on the boundary of two hexagons h ∼ h′, set

fω(z) =

{
−1 if ω(h) 6= ω(h′)

ω(h) if ω(h) = ω(h′).

Similarly, if z is on the intersection of three hexagons h, h′, h′′, set

fω(z) =

{
ω(h) if ω(h) = ω(h′) = ω(h′′)

−1 otherwise.

This extends ω to a coloring of all C.

Now, given the domain D with four marked points a, b, c, d on the boundary,
we want the boundary to be compatible with coloring (a, b) ∪ (c, d) black
and (b, c)∪ (d, a) red. Thus, define fD,ω : D̄ → {0, 1,−1} by forcing fD,ω to
be 1 on hexagons that intersect (a, b) or (c, d) and forcing fD,ω to be 0 on
hexagons that intersect (b, c) or (d, a). If there is a conflict (points z that
lie on hexagons of different colors, or hexagons that intersect different parts
of the boundary of different colors) set fD,ω = −1.

a

b

c

d

Figure 10.1: A domain D with four marked points a, b, c, d. The hexagonal
lattice H is drawn, and is colored according to some configuration ω. Can
you find the red crossing from (b, c) to (d, a)?

We can define random variables

B(ω) = BD,a,b,c,d,δ(ω) = f−1
D,ω(1) and R(ω) = RD,a,b,c,d,δ(ω) = f−1

D,ω(0).
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These are the black and red components in D̄. One may then verify that
because we are working in the plane, and because D is simply connected,
either (a, b) is connected to (c, d) by a black path, or (b, c) is connected to
(d, a) by a red path. These events are disjoint, since there cannot be both
red and black paths intersecting in D.

We can now ask what is the probability that there exists a black path con-
necting (a, b) to (c, d)? Let us denote this probability by P (D, a, b, c, d, δ).

An amazing conjecture by Aizenman, Langlands, Pouliot and Saint-Aubin
states that the limit P (D, a, b, c, d) = limδ→0 P (D, a, b, c, d, δ) should exist
and should be conformal invariant; that is, if φ : D → D′ is a conformal
map then

P (φ(D), φ(a), φ(b), φ(c), φ(d)) = P (D, a, b, c, d).

John Cardy
Cardy later predicted the exact formula for this probability, which, as Lennart
Carleson observed, is simplest stated on the equilateral triangle: For T = the
equilateral triangle, and a, b, c the vertices of T , suppose that [c, a] = [0, 1]
on the real axis. Then for any d ∈ (0, 1), P (T, a, b, c, d) = d. (A miracle!)

Cardy’s (non-rigorous) arguments, stemming from conformal field theory,
are valid for any “nice” planar lattice. In one of the beautiful works of the
field, Smirnov proved Cardy’s formula and the conformal invariance for the
triangular lattice T.

Stanislav Smirnov

Theorem 10.1.1 (Cardy-Smirnov Formula) Consider site percolation on the
triangular lattice T. Then, the limit P (D, a, b, c, d) exists and is conformal
invariant in the sense

P (φ(D), φ(a), φ(b), φ(c), φ(d)) = P (D, a, b, c, d)

for any conformal map φ.

Moreover, for an equilateral triangle T of unit side length with vertices
a, b, c, and any point d on (c, a), the formula for this probability is given
by

P (T, a, b, c, d) = |d− c|.
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10.2 Color Switching

We will prove the main steps in Smirnov’s fabulous proof. For convenience,
and simplicity of the presentation, we will restrict to nice domains.

Let δ > 0. A nice domain D at scale δ, is a union of hexagons in δH,
such that D is simply connected, and such that the boundary of D forms a
simple path in δH.

We also want to consider points in the complex plane that lie on the in-
tersections of the hexagons. Let Cδ be the set of vertices of the hexagonal
lattice δH (that is points on the intersection of three hexagons).

Let ∂δD be the points in Cδ that lie on two hexagons in the boundary
∂D. Each such point has a unique adjacent edge that is an edge between
hexagons. If we mark k such points on the boundary of D, then this parti-
tions the boundary of D into k disjoint parts.

Let us restate the planar duality lemma that we have already used many
times.

Lemma 10.2.1 Let D be a nice domain with 4 marked points a, b, c, d ∈
∂δD. For x, y ∈ {a, b, c, d} let (x, y) be the part of the boundary between
points x and y. Let A be the event that there is an open (black) crossing
from (a, b) to (c, d), and let B be the event that there is a closed (red)
crossing from (b, c) to (d, a). Let Ω be the set of percolation configurations
ω ∈ {0, 1}D with boundary values ω

∣∣
(a,b)∪(c,d)

= 1, ω
∣∣
(b,c)∪(d,a)

= 0. Then,

Ω = A
⊎
B.

That is, if we force the boundary to be black on (a, b) ∪ (c, d) and red
on (b, c) ∪ (d, a), then there is either a black crossing between (a, b) and
(c, d) or a red crossing between (b, c) and (d, a), but not both.

Proof. Start an exploration on the edges in-between hexagons from the
unique edge adjacent to point b, keeping red on the right and black on
the left. When reaching a fresh hexagon, turn left if it is red and right if
it is black. This defines a unique path from b into D that can only exit
D at an edge entering a vertex in ∂δD, which is adjacent to hexagons of
different colors. The only such edges (under our boundary conditions) are
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those entering a, c, d. But exiting at d would imply that red is on the left
and black on the right, which is the wrong orientation. So the exploration
path must exit at either a or c.

If the exploration path exits at a - the red hexagons to the right of the path
form a red connection from (b, c) to (d, a). If the exploration path exits at
c the black hexagons to the left of the path form a black connection from
(a, b) to (d, a).

Two such connections cannot exist, since this would give two disjoint paths
in D, one from (a, b) to (c, d) and one from (b, c) to (d, a) that do not
intersect. This contradicts the fact that D is simply connected. ut

a

b

c

d

Figure 10.2: A nice domain D. The path tracing the boundary is marked
in blue. Four points in Cδ dividing the boundary into four parts are shown.
The exploration path from b is marked in green.

Let D be a nice domain, x ∈ D and A ⊂ ∂D. We write x ↔B A for the
event that x is connected to A by a black (open) path in D. Similarly, we
write x↔R A for the event that x is connected to A by a red (closed) path
in D. Note that x must be open / black (resp. closed / red) if x ↔B A
(resp. x↔R A). So these events are disjoint.

The following lemma is a subtle step in Smirnov’s proof, and is usually
dubbed the Color Switching Lemma.
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Lemma 10.2.2 (Color Switching) Let D be a nice domain of scale δ. Let
a, b, c ∈ ∂δD and let A1 = (a, b), A2 = (b, c), A3 = (c, a). Let x1, x2, x3 be
three adjacent hexagons in D \ ∂D (so their centers form a triangle).

For j ∈ {1, 2, 3} write

Bj = {xj ↔B Aj} and Rj = {xj ↔R Aj} .

Then,

P 1
2
[B1 ◦B2 ◦R3] = P 1

2
[B1 ◦R2 ◦B3] = P 1

2
[R1 ◦B2 ◦B3].

x1

x3

x2

A1

A2

A3

a

b

c

Figure 10.3: A nice domain with three marked points on the boundary, and
three adjacent hexagons x1, x2, x3 inside. Note the event B1 ◦R2 ◦R3.

Remark 10.2.3 It is important not to mix this up with the fact that any
color combination is possible. The Color Switching Lemma says nothing
about three disjoint paths of the same color (i.e. P[B1 ◦B2 ◦B3]).

However, note that since we are at p = 1
2 , we may switch all black to red

and vice-versa, so P 1
2
[B1 ◦ B2 ◦ R3] = P 1

2
[R1 ◦ R2 ◦ B3], and similarly for

other combinations.

Proof. The first step is to note that it suffices to prove

P[B1 ◦R2 ◦B3] = P[B1 ◦R2 ◦R3]. (10.1)
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Indeed, given (10.1), switching black to red and vice-versa (recall that we
are at p = 1

2),

P 1
2
[B1 ◦R2 ◦B3] = P 1

2
[B1 ◦R2 ◦R3] = P 1

2
[R1 ◦B2 ◦B3],

which is the second equality in the lemma.

Relabeling 1 7→ 2 7→ 3 7→ 1, we also have

P[B1 ◦B2 ◦R3] = P[R3 ◦B1 ◦B2] = P[B3 ◦R1 ◦B2] = P[R1 ◦B2 ◦B3].

We proceed with the proof of (10.1). Note that (10.1) is equivalent to

P[B1 ◦R2 ◦B3 | B1 ∩R2] = P[B1 ◦R2 ◦R3 | B1 ∩R2]. (10.2)

x1

x3

x2

A1

A2

A3

a

b

c

z

w D′

Figure 10.4: The proof of (10.2). The blue line is the interface γ, which only
explores those hexagons in the dotted black boundary. What is left over is
D′.

Suppose we are on the event B1∩R2. Start an exploration at b into the edge
between A1 and A2. If we think of A1 as being black and A2 as red, we may
explore the interface until we reach the edge (z, w) between the hexagons
x1, x2, such that w is at the intersection of the three hexagons x1, x2, x3.
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This interface is explored so that black is always on the left, red is on the
right, and A1 is considered black, A2 is considered red.

Now, let γ be the path explored, and let D′ be the domain D with all
hexagons adjacent to γ removed. Note that the hexagons adjacent to γ
include a black path from x1 to A1 and a red path from x2 to A2. Also note
that x3 ∈ D′.

The main observation is that due to planarity, conditioned on γ being the
interface stemming from the event B1∩R2, the event B1◦R2◦B3 holds if and
only if there exists a black path in D′ from x3 to A3. Similarly, conditioned
on γ, B1 ◦R2 ◦R3 holds if and only if there exists a red path in D′ from x3

to A3.

Recalling that we are at p = 1
2 , and that all hexagons in D′ are independent

of those adjacent to γ, we get

P[B1 ◦R2 ◦B3 | γ] = P 1
2
[∃ black α : x3 → A3 ⊂ D′] = P 1

2
[∃ red α : x3 → A3 ⊂ D′]

= P[B1 ◦R2 ◦R3 | γ].

Summing over all possible γ, since the event B1 ∩ R2 is the union of such
Interfaces, we obtain (10.2). ut

10.3 Harmonic Functions

In this section we will consider special functions on the vertices of the hexag-
onal lattice δH; i.e. functions on Cδ.

Throughout this section fix a nice domain D, with three points a, b, c on
∂δD, separating ∂D into A1 = (a, b), A2 = (b, c), A3 = (c, a). Let z ∈ Cδ be
some δH-vertex in the interior of D. Define the event S3(z) = S3

δ (z) to be
the event that there exists a simple open (black) path from A1 to A2 that
separates z from A3. We stress that this path must be simple, that is, no
hexagon may be visited more than once. The events S1(z), S2(z) are defined
similarly.

Lemma 10.3.1 Let D, a, b, c, xj , Aj , Bj , Rj be as in the Color Switching
Lemma (Lemma 10.2.2). Assume that x1, x2, x3 are in counter-clockwise
order, and also A1, A2, A3 (or, equivalently, a, b, c). Let (z, w) be the edge
in the hexagonal lattice δH that is in between the hexagons x1, x2, such
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A1

A2

A3

a

b

c

z

A1

A2

A3

a

b

c

z

Figure 10.5: Left: The event S3(z). Right: S3(z) does not hold, because
the path is not simple.

that w is at the intersection of all three hexagons x1, x2, x3.

Then, we have the equality of events:

S3(z) \ S3(w) = B1 ◦B2 ◦R3.

Proof. The direction B1 ◦ B2 ◦ R3 ⊂ S(z) \ S(w) is simpler. Indeed, if
B1 ◦ B2 ◦ R3 holds, then there are 3 disjoint paths, γ1 : A1 → x1, γ2 : x2 →
A2, γ3 : x3 → A3 such that γ1, γ2 are black and γ3 is red. The composed
path γ2γ1 is a black path from A1 to A2 that passes through x1 7→ x2. Since
(z, w) is the edge between x1 and x2, this path must separate z from w.
Since there is a closed path from w to A3, it must be that γ2γ1 separates z
from A3, but does not separate w from A3.

For the other direction, assume that S(z) \S(w) holds. Thus, there exists a
black (open) path γ : A1 → A2 separating z from A3. Suppose that |γ| = n.
Let β be the path in D that starts on γn ∈ A2, continues in A2 in clockwise
direction, until reaching A1, continues on A1 in clockwise direction and stops
once reaching γ0. The path βγ is a simple cycle that surrounds z but not
w (otherwise S3(z) \ S3(w) would not hold). So γ must pass through the
edge (z, w), meaning that x1, x2 ∈ γ but x3 6∈ γ. Because γ goes from A1 to
A2, and x1, x2, x3 are in cyclic order, this implies that γ is composed of two
disjoint parts: a black path from A1 to x1 and another disjoint black path
from x2 to A2.

Now, let D′ be the domain that is the component of D \ γ containing x3.
If D′ does not contain part of A3 then w is separated by γ from A3, which
contradicts S3(z) \ S3(w). Let D′′ = D′ ∪ γ. Suppose that α1 is the part
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A1

A2

A3

a

b

c

z

wx1

x2

x3

Figure 10.6: Proof of Lemma 10.3.1.

of γ from A1 to x1 and α2 is the part of γ from x2 to A2. Let A′1 =
(A1 ∩D′′) ∪ α1 \ {x1} and A′2 = (A2 ∩D′′) ∪ α2 \ {x2}. Let A′3 = A3 ∩D′′
and A′4 = {x1, x2, x3}. These sets decompose the boundary of D′′ into four
parts. Our duality arguments give that either A′1 is connected to A′2 by a
black path in D′′, or A′3 is connected to A′4 by a red path in D′′. In the first
case, this path joined with γ would separate w from A3 in D, contradicting
S3(z) \ S3(w). So there must exist a red path connecting A′3 to A′4.

If x3 was black, then w would be separated from A3 in D. So , since x1, x2

are black, we have that x3 is connected to A3 in D by a red path, which is of
course disjoint from the disjoint black paths α1 : A1 → x1 and α2 : x2 → A2.
We thus conclude that B1 ◦B2 ◦R3 holds. ut

10.3.1 Contour Integrals

Recall that the hexagonal lattice δH is dual to the triangular lattice δT.
That is, if (x, y) is a directed edge in δT, then for ρ = i√

3
, the dual directed

edge in δH is (z, w) where

w = ρy−x2 + y+x
2 and z = ρx−y2 + x+y

2

(multiplication by i rotates by π
2 and

√
3 is the scale. There is of course a

choice here to rotate either clockwise or counter-clockwise, which we have
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arbitrarily taken to be counter-clockwise.) Recall that vertices of δT are the
centers of the hexagons in δH. For a directed edge (x, y) in δT, we write
[x, y] for the corresponding dual directed edge in δH. If (z, w) is a directed
edge in δH we write [z, w] for the corresponding primal edge in δT. Note
that for z ∼ w in δH, if [z, w] = (x, y) then ρ(y − x) = (w − z).

Let γ be a simple path in δT ∩D Define the contour integral along γ of a
function φ = φδ on Cδ ∩D by∮

γ
φ =

|γ|∑
j=1

(γj − γj−1)φ([γj−1, γj ]),

where φ([x, y]) = φ([x, y]+) = φ(ρy−x2 + y+x
2 ). If φ = φδ converges uniformly

to some limit ψ, this integral will converge to the usual complex contour
integral of ψ.

γ
w = ρy−x

2
+ y+x

2

y

x z = ρx−y
2

+ x+y
2

Note that if γ is a simple closed path in δT ∩ D (so γ0 = γ|γ| is the only
self intersection point), then it separates the complex plane C into two com-
ponents, an interior, denoted Int(γ) and exterior, which is the component
containing ∞ (Jordan’s theorem). If γ is oriented counter-clockwise, then∮

γ
φ =

∑
Int(γ)3w∼z 6∈Int(γ)

ρ−1(w − z)φ(w).

One more definition, which is to avoid technical complications: If D is some
nice domain of scale δ, and a, b, c ∈ ∂δD, for z ∈ D define radD,a,b,c(z) =
maxj=1,2,3 dist(z,Aj), where as usual A1 = (a, b), A2 = (b, c), A3 = (c, a).
The radius of D is then defined to be

rad(D) = inf
z∈D

radD,a,b,c(z).

X For a point z ∈ Cδ ∩D define Hj(z) = P[Sj(z)]. For a directed edge in
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the hexagonal lattice, z ∼ w ∈ Cδ ∩D, define Pj(z, w) = P[Sj(z) \ Sj(w)].
Note that

Hj(z)−Hj(w) = Pj(z, w)− Pj(w, z).
Set τ = ei

2π
3 . Define

H = Hδ = τH1 + τ2H2 + τ3H3 and F = Fδ = H1 +H2 +H3.

Lemma 10.3.2 For any simple closed path γ in δT ∩ D, of Euclidean
length L,∣∣∣ ∮

γ
H
∣∣∣ ≤ 3LP[x↔ ∂n(x)] and

∣∣∣ ∮
γ
F
∣∣∣ ≤ 3LP[x↔ ∂n(x)],

where n = dδ−1rad(D)e.

Proof. We can without loss of generality assume that γ is oriented counter-
clockwise. Set I = Int(γ) ∩ Cδ.

For w ∈ Cδ ∩D, consider the sum∑
z∼w

(w − z)φ(w) = (1 + τ + τ2)(w − z′)φ(w) = 0,

for some fixed z′ ∼ w. Thus,

0 =
∑

w∈I,z∼w
(w − z)φ(w) =

∑
I3w∼z∈I

(w − z)φ(w) + ρ

∮
γ
φ

=
1

2

∑
I3w∼z∈I

(w − z)(φ(w)− φ(z)) + ρ

∮
γ
φ.

Taking φ = Hj , we obtain,

ρ

∮
γ
Hj =

1

2

∑
I3w∼z∈I

(z − w)(Pj(w, z)− Pj(z, w)) =
∑

I3w∼z∈I
(w − z)Pj(z, w)

=
∑

w∈I,z∼w
(w − z)Pj(z, w) +

∑
I3w∼z 6∈I

(z − w)Pj(z, w).

Now, fix w ∈ I, and let z1, z2, z3 be the neighbors of w in counter-clockwise
order. Let Pj,k = Pj(zk, w). The Color Switching Lemma together with
Lemma 10.3.1 give that

Pj,k = Pj+1,k+1 = Pj+2,k+2. (10.3)
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(Throughout, we always take indices modulo 3.) Thus,

∑
z∼w

(w − z)
3∑
j=1

Pj(z, w) = (w − z3)

3∑
j,k=1

τkPj,k = (1 + τ + τ2)

3∑
k=1

P1,k = 0,

and also

∑
z∼w

(w − z)
3∑
j=1

τ jPj(z, w) = (w − z3)
3∑

j,k=1

τk+jPj,k = (1 + τ + τ2)
3∑

k=1

P1,k = 0.

We conclude that

ρ

∮
γ
H =

∑
I3w∼z 6∈I

(z − w)(τP1(z, w) + τ2P2(z, w) + τ3P3(z, w)),

and

ρ

∮
γ
F =

∑
I3w∼z 6∈I

(z − w)(P1(z, w) + P2(z, w) + P3(z, w)).

Finally, note that the event Sj(z) \ Sj(w) implies that for every hexagon
that z is on, there exists a mono-chromatic path from that hexagon to the
corresponding part of the boundary. This is just Lemma 10.3.1. Since one
of these boundary parts is at distance at least rad(D) from z, and since
the distance between two adjacent hexagon centers is δ, we get that for
n = dδ−1rad(D)e,

P[Sj(z) \ Sj(w)] ≤ P[x↔ ∂n(x)].

Thus,

∣∣∣ ∮
γ
F
∣∣∣ =

∣∣∣ |γ|∑
j=1

(γj−1 − γj)(P1 + P2 + P3)([γj−1, γj ]
−, [γj−1, γj ]

+)
∣∣∣

≤ δ|γ|3P[x↔ ∂n(x)],

and similarly, ∣∣∣ ∮
γ
H
∣∣∣ ≤ δ|γ| · 3P[x↔ ∂n(x)].

Since δ|γ| is the Euclidean length of γ, this completes the proof. ut
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10.3.2 Proof of the Cardy-Smirnov Formula

X Assume that the domain D is a discrete approximation of some simply

connected domain D. We will assume (but not prove) that the functions Hj

converge uniformly to limiting functions h1, h2, h3 on D as δ → 0. (This can
be shown via the Arzelà-Ascoli Theorem, with a proper Hölder continuity
estimate on Hj .) Given this convergence, we have limiting functions h =
limHδ = τh1 + τ2h2 + τ3h3 and f = limFδ = h1 + h2 + h3. Our goal is to
show that h, f are harmonic, so must be uniquely defined by their boundary
values. We will then use the boundary values to determine these functions.

Giacinto Morera (1856–1909)

Lemma 10.3.2 tells us that for any triangular closed simple contour γ inside
D, the contour integrals satisfy

∮
γ h(z)dz =

∮
γ f(z)dz = 0. This is because

of uniform convergence, so the discrete contour integrals converge to their
continuous counterparts, and also because as δ → 0, for n = dδ−1rad(D)e →
∞, so P[x↔ ∂n(x)]→ 0, by Zhang’s argument.

A famous theorem by Morera now tells us that h and f are holomorphic in
D. So h and f are determined by their boundary values.

Let us see what these boundary values are.

A3

A2

A1

b

a

c
z

Figure 10.7: The possibilities when z ∈ A3, which cannot occur together.

Note that for any z ∈ A3, one cannot separate z from A3, so h3(z) = 0. Also,
as in Figure 10.7, consider the four boundary parts (a, b), (b, c), (c, z), (z, a).
Then, either (a, b) is connected to (c, z) by a black path or (b, c) is connected
to (z, a) by a red path, and exactly one of these events must hold. Since red
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and black have the same probability (recall, we are at p = 1
2 !) we get that

P[S1(z)] + P[S2(z)] = 1, because the black and red paths above separate z
from the corresponding boundaries. Taking the δ → 0 limit gives that for
any z ∈ A3,

h3(z) = 0 and h1(z) + h2(z) = 1.

Of course this argument can be repeated for any j ∈ {1, 2, 3}, so that if
z ∈ Aj then

hj(z) = 0 and hj+1(z) + hj+2(z) = 1.

What is the conclusion?

X First of all, for any z ∈ Aj we get

f(z) = h1(z) + h2(z) + h3(z) = 1.

So f has constant 1 boundary values, and thus must be the constant function
1.

X Second, let T be the equilateral triangle with vertices at 1, τ, τ2. Let

ϕ : T → D be the conformal map (guarantied by the Reimann mapping the-
orem) that maps ϕ(τ) = c, ϕ(τ2) = a, ϕ(1) = b. Consider the holomorphic
function, g = h ◦ ϕ.

Because h1+h2+h3 = 1, we have that any z ∈ T is mapped by g to a convex
combination of τ, τ2, τ3 = 1, that is g : T → T . Moreover, if z ∈ (τ, τ2) then
ϕ(z) ∈ (c, a) and so h3(ϕ(z)) = 0 and

g(z) = τh1(ϕ(z)) + τ2h2(ϕ(z)) ∈ (τ, τ2).

Similarly, we get that g : T → T is a holomorphic map, mapping the bound-
ary parts (1, τ), (τ, τ2) and (τ2, 1) to themselves. By standard complex
analysis there is only one such function: the identity. So h : D → T is
the Reimann map mapping a 7→ τ2, b 7→ 1, c 7→ τ .

Finally, we recover the Cardy-Smirnov formula: For a point d ∈ (c, a), the
probability that (a, b) is connected to (c, d) by a black path is the probability
that d is separated from (b, c) by a black path from (a, b) to (c, a). Thus, as
δ → 0 this converges to h2(d). We have seen that

φ(d) = τh1(d) + τ2h2(d) = τ + τ(τ − 1)h2(d)
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where φ is the unique conformal map from D to T mapping a 7→ τ2, b 7→
1, c 7→ τ .

This already proves the conformal invariance.

It also gives the value of h2(d), since we can evaluate it for a specific domain,
namely T itself. If a = τ2, b = 1, c = τ and if d ∈ (c, a) then write d =
(1− ε)c+ εa where |d− c| = |τ2− τ | · ε. Note that φ is the identity map, so

h2(d) =
d− τ

τ(τ − 1)
=

d− c
τ2 − τ .

h2(d) is a non-negative real number so h2(d) = |d−c|
|τ2−τ | = ε, which is exactly

the formula, since |τ2− τ | = |τ −1| is exactly the side length of the triangle.



Chapter 11

Percolation Beyond Zd

11.1 The Mass Transport Principle

11.1.1 A review of group actions

Recall that a group Γ is said to act on a set X if there is an action Γ×X →
X, denoted (g, x) 7→ g.x such that gh.x = g.h.x for all g, h ∈ Γ, x ∈ X
(associativity) and 1Γ.x = x for all x ∈ X.

Exercise 11.1 Show that any group acts on itself by left multiplication.

Show that any group acts on itself by conjugation. � � �

Exercise 11.2 Let Γ = Aut(G) be the set of automorphisms of a graph
G. Show that Γ acts on G. � � �

A group Γ acts transitively on X if for every x, y ∈ X there exists g ∈ Γ
such that g.x = y. Thus, a transitive graph G is one that its automorphism
group acts on it transitively.

If Γ acts onX, for any x ∈ X we can define a subgroup Γx := {g ∈ Γ : g.x = x} .
This is called the stabilizer of x. We can also define Γx = {g.x : g ∈ Γ}.
This is the orbit of x.

So a transitive action is the same as Γx = X for all x ∈ X.

96
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Exercise 11.3 Show that the stabilizer of x is a subgroup.

Show that |Γx| = [Γ : Γx]. � � �

One may also consider the orbit of a subset of Γ: If S ⊂ Γ let Sx =
{s.x : s ∈ S}.

Let Γ act on X. A function f : X×X → R is said to be invariant under Γ,
if it is invariant under the diagonal action of Γ; that is, if for any x, y ∈ X
and any g ∈ Γ, we have f(gx, gy) = f(x, y).

11.1.2 Mass Transport

Let Γ act on a graph X by automorphisms (i.e. Γ ≤ Aut(X)). Consider
Γxy = {g.y : g.x = x}. Note that for any g ∈ Γx we have that dist(g.y, x) =
dist(y, x). Thus, Γxy ⊂ {z : dist(z, x) = dist(y, x)}, which is finite.

Theorem 11.1.1 (General Mass Transport Principle) Let Γ be a group
acting by automorphisms on a graph X. Let f : X × X → [0,∞] be a
non-negative invariant function. Then, for any a, b ∈ X∑

x∈Γb

f(a, x) =
∑
y∈Γa

f(y, b) · |Γyb||Γby|
.

Before proving the general mass transport principle, let us see some of the
consequences: First of all, if the group acts transitively, then the sums above
are just over the whole space X.

Corollary 11.1.2 If Γ acts transitively by automorphisms on a graph X
and f : X × X → [0,∞] is a non-negative invariant function, then for
any o ∈ X, ∑

x

f(o, x) =
∑
x

f(x, o) · |Γxo||Γox|
.

A most important concept in this context is unimodularity:

Definition 11.1.3 Let Γ act by automorphisms on a graph X. The action
is called unimodular if for any y ∈ Γx, we have |Γxy| = |Γyx|.
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A graph G is called unimodular if Aut(G) is a unimodular action.

Exercise 11.4 Let Γ be a group acting on X. Show that for all x, y ∈ X,

|Γxy| = [Γx : Γx ∩ Γy].

Show that if |Γx| <∞ for all x ∈ X, then the action is unimodular. ���

The mass transport principle is in fact equivalent to unimodularity for tran-
sitive actions.

Theorem 11.1.4 (Mass Transport Principle) Let Γ be a transitive action
of automorphisms on a graph X. Then, the action is unimodular if and
only if for every f : X ×X → [0,∞] non-negative invariant function, and
every o ∈ X, ∑

x

f(o, x) =
∑
x

f(x, o).

First, some algebra:

Proposition 11.1.5 Let Γ act on X. Let Γx,y = {g ∈ Γ : g.x = y}.

For any x, y ∈ X we have that for any g ∈ Γx,y,

Γx,y = gΓx = Γyg.

Moreover, for any x, y, z ∈ X, if Γx,y 6= ∅ then |Γx,yz| = |Γxz|.

Proof. Choose g ∈ Γx,y. Then, if h ∈ Γx,y we have that h = gg−1h and
g−1h ∈ Γx. On the other hand, if h ∈ Γx then gh ∈ Γx,y. Thus, Γx,y = gΓx.

Similarly, if h ∈ Γx,y then hg−1 ∈ Γy and if h ∈ Γy then hg ∈ Γx,y. So
Γx,y = Γyg.

Now, by the first identity Γx,yz = gΓxz. The map h.z 7→ gh.z between
Γxz and gΓxz is a bijection; indeed, it is injective by associativity, and it is
surjective by definition. So

|Γx,yz| = |gΓxz| = |Γxz|.
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ut

Proof of Theorem 11.1.4. Let Γ be a transitive action. If Γ is unimodular,
then the theorem follows directly by the mass transport principle, since
|Γxo| = |Γox| for all o, x by the definition of unimodularity.

Now assume that Γ is transitive and
∑

x f(o, x) =
∑

x f(x, o) for every
non-negative invariant function as in the theorem. Fix a, b ∈ X and set
f(x, y) = 1{y∈Γa,xb} where Γa,x = {g ∈ Γ : g.a = x}. f is invariant since
f(g.x, g.y) = 1 ⇐⇒ g.y ∈ Γa,g.xb which is if and only if there exists γ ∈ Γ
such that γa = g.x and γ.b = g.y. This is if and only if g−1γ ∈ Γa,x and
y = g−1γ.b, which is equivalent to y ∈ Γa,xb. So f(g.x, g.y) = f(x, y).

Thus by assumption,

|Γa,ob| =
∑
x

f(o, x) =
∑
x

f(x, o) = # {x : o ∈ Γa,xb} .

Since

{x : o ∈ Γa,xb} = {x : ∃ g ∈ Γ , g.a = x , g.b = o} = {g.a : ∃ g ∈ Γ , g.b = o} = Γb,oa,

we get that
|Γa,ob| = |Γb,oa|.

This was true for any a, b, o. Choosing a = o we get that for any a, b, |Γab| =
|Γb,aa| = |Γba| by Proposition 11.1.5 (Γa,b 6= ∅ because of transitivity). This
is the definition of unimodular. ut

We now turn to the proof of the general mass transport principle.

Proof of Theorem 11.1.1. If y ∈ Γx,ba then y = g.a for some g ∈ Γx,b. Since
f is invariant this implies that f(y, b) = f(g.a, g.x) = f(a, x). Thus,∑

x∈Γb

f(a, x) =
∑
x∈Γb

f(a, x)
∑

y∈Γx,ba

1

|Γx,ba|
=
∑
x∈Γb

1

|Γx,ba|
∑

y∈Γx,ba

f(y, b)

We now interchange the sums. For this, note that

{(x, y) : x ∈ Γb, y ∈ Γx,ba} =
{

(x, y) : ∃ g′ , x = g′.b and ∃ g , g.x = b, g.a = y
}

= {(x, y) : ∃ g , g.x = b, g.a = y}
=
{

(x, y) : ∃ g , g−1.b = x, g.a = y
}

= {(x, y) : x ∈ Γy,ab, y ∈ Γa}
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So ∑
x∈Γb

f(a, x) =
∑
x∈Γb

1

|Γx,ba|
∑

y∈Γx,ba

f(y, b) =
∑
y∈Γa

f(y, b)
∑

x∈Γy,ab

1

|Γx,ba|

By Proposition 11.1.5, we know that for any g ∈ Γx,b, Γx,b = Γbg.

Let x ∈ Γy,ab. Then there exists g such that g.y = a and g.b = x. So
g−1 ∈ Γx,b and g−1.a = y. Thus, Γx,b = Γbg

−1 and so Γx,ba = Γbg
−1a = Γby.

Plugging this into the above, we have∑
x∈Γb

f(a, x) =
∑
y∈Γa

f(y, b)
∑

x∈Γy,ab

1

|Γx,ba|

=
∑
y∈Γa

f(y, b)
∑

x∈Γy,ab

1

|Γby|
=
∑
y∈Γa

f(y, b) · |Γy,ab||Γby|
=
∑
y∈Γa

f(y, b) · |Γyb||Γby|
,

where the last equality is again by Proposition 11.1.5. ut

Finally, we may deduce that any group is a unimodular and transitive action
on any one of its Cayley graphs.

Corollary 11.1.6 If G is a group generated by a finite symmetric set,
then the action of G on the corresponding Cayley graph is transitive and
unimodular.

Proof. Transitivity is simple.

As for unimodularity, we show that the mass transport principle is satisfied,
and thus G is unimodular by Theorem 11.1.4.

Let f : G×G→ [0,∞] be an invariant function. Then, since x 7→ gx−1g is
a bijection of G onto itself,∑

x

f(g, x) =
∑
x

f(gx−1g, g) =
∑

y=gx−1g

f(y, g).

ut
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Exercise 11.5 Let G be a finitely generated group.

Show that the action of G on the Cayley graph of G (by left multiplica-
tion, right Cayley graph) is unimodular.

Show that the full group of automorphisms of a Cayley graph acts by a
unimodular action (i.e. the Cayley graph is unimodular). � � �

Exercise 11.6 Consider the following graph X. Start with the vertex set
V (X) = V (T) where T = Td is the d-regular tree (d ≥ 3).

Fix an infinite simple path in the graph T, say p = (p0, p1, p2, . . .). We
can define a generation function: For any vertex x ∈ V (X) there is a
unique closest point to x in the path p. Call this point p(x). Note that
p(x) = x if and only if x ∈ p. Define n(x) to be the unique integer such
that p(x) = pn(x). Then let ||x|| = dist(x, p)− n(x).

Now for any x ∈ T there is a unique vertex (x) such that ||(x)|| = ||x||−1.
This is the parent of x. Also, the vertex ((x)) is the grand-parent of x,
and is the unique vertex for which ||((x))|| = ||x|| − 2.

For the edges of the graph X, take all edges in T (which connect every
x to its parent), but also add an edge between every x and its grand-
parent. That is,

E(X) =
{
{x, ((x))} , {x, (x)} : x ∈ T

}
.

This is known as the grand-father graph.

Prove the following:

• X is a transitive graph.

• The degree in X is (d− 1)2 + d+ 1 = d2 − d+ 2.

• X is not unimodular.

� � �
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Exercise 11.7 Show that if you construct the grand-father graph from
the 2-regular tree T2, you do obtain a Cayley graph. � � �

Exercise 11.8 Let X be a graph, and let Γ ≤ Aut(X). Suppose that Γ
acts transitively on X.

Show that of the action of Γ on X is unimodular, then X is a unimodular
graph (i.e. the full automorphism group of X acts by a unimodular
action). � � �

11.2 Applications of Mass Transport

11.2.1 Invariant Percolation

We now define a considerable generalization of bond / site percolation, but
although it is very general, it is also extremely useful in many contexts.

Definition 11.2.1 (Invariant Percolation) Let G be a graph. Let P be
any probability measure on either 2V (G), 2E(G) or 2V (G)∪E(G). Let Ω be
the canonical random subset. We say that P (or Ω) is an invariant
percolation if P is invariant under the action of Aut(G); that is, if for
every ϕ ∈ Aut(G), the probability measure P ◦ϕ−1 = P; in other words,
ϕΩ and Ω have the same distribution.

When we wish to distinguish between the cases 2V (G), 2E(G) or 2V (G)∪E(G)

above, we will say that P (or Ω) is an invariant site (resp. bond, resp. mixed)
percolation.

Exercise 11.9 Let G be a Cayley graph. Show that both site and bond
percolation on G are invariant percolation. � � �

Example 11.2.2 If G is transitive, there is no invariant percolation such that
|Ω| = 1 a.s.

Indeed, if the was such a measure P, then P[Ω = {x}] would be a constant
independent of x (by transitivity), so

1 =
∑
x

P[Ω = {x}] =
∑
x

p =∞!

454
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Example 11.2.3 Suppose G is transitive. Does there exists an invariant
percolation Ω such that 0 < |Ω| <∞ a.s.?

If there was such a measure P, then define Ω′ by first choosing Ω according to
P and then choosing a uniformly chosen vertex x in Ω, and setting Ω′ = {x}.
That is,

P[Ω′ = {x} | Ω] =
1{x∈Ω}
|Ω| .

We claim that Ω′ is an invariant percolation, which would contradict the
previous example.

Indeed, if ϕ ∈ Aut(G) then

P[ϕΩ′ = {x} |Ω] = P[Ω′ =
{
ϕ−1x

}
| Ω] =

1{ϕ−1x∈Ω}
|Ω| =

1{x∈ϕΩ}
|ϕΩ| = P[Ω′ = {x} | ϕΩ].

Since Ω and ϕΩ have the same distribution, this shows that Ω′ is invariant.
454

Example 11.2.4 If G is transitive then the number of finite components in
an invariant percolation Ω must be 0 or ∞ a.s.

For suppose N is the number of finite components, and P[0 < N <∞] > 0.
Then, if we set Ω′ to be the union of all finite components, then the measure
P[Ω′ ∈ ·|0 < N < ∞] is an invariant percolation such that P[|Ω′| < ∞|0 <
N <∞] = 1. 454

Example 11.2.5 Let P be an invariant percolation, and let Ψ be the (random)
set of all r-trifurcation points. Then, Ψ is an invariant percolation. So
|Ψ| ∈ {0,∞} a.s. 454

Proposition 11.2.6 Let P be an invariant percolation on some Cayley
graph G. For any x ∈ G, the component of x, C(x), contains either 0 or
infinitely many trifurcation points.

Proof. For any configuration ω ∈ {0, 1}V (G) and x, y ∈ G define F (x, y, ω) =
0 if the component of x in ω contains 0 or infinitely many r-trifurcation
points. Otherwise, if the number of r-trifurcation points in the component
of x in ω is N , set

F (x, y, ω) =

{
1
N if y is a trifurcation point

0 otherwise
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Note that F (ϕx, ϕy, ϕω) = F (x, y, ω) for ϕ ∈ Aut(G). Thus, f(x, y) :=
EF (x, y,Ω) is invariant. So we can apply Mass Transport to f and get∑

x

f(o, x) =
∑
x

f(x, o).

By definition,
∑

x F (o, x, ω) ∈ {0, 1} so
∑

x f(o, x) ≤ 1.

However, for some configuration ω: Assume that o ∈ G is such that o is
a r-trifurcation point in ω, and the component of o in ω has finitely many
r-trifurcation points. Then the component of o is infinite, and for any x in
this component, F (x, o, ω) = 1

N for some N .

We conclude that if A = Ao is the event the the component of o contains
finitely many r-trifurcation points, and that o is a r-trifurcation point, then
for any ω ∈ A,

∑
x F (x, o, ω) =∞. Thus, if P[A] > 0 then

1 ≥
∑
x

f(x, o) ≥ E
∑
x

F (x, o, ω)1{ω∈A} =∞.

Thus, by Mass Transport we must have that P[Ao] = 0.

Now, let A′o be the event that the component of o contains finitely many
r-trifurcation points, then P[A′o] ≤

∑
x P[Ax] = 0, because A′o implies that

there must be some x in the component of o that is a r-trifurcation point.

This holds for any o, so a.s. there are no components with finitely many
r-trifurcation points. ut

11.3 Critical Percolation on Non-Amenable Groups

Recall the definition of Φ(G) the Cheeger constant of a graph, and that G
is amenable if and only if Φ(G) = 0.

The following is a beautiful result of Benjamini, Lyons, Peres and Schramm.

Theorem 11.3.1 If G is a non-amenable unimodular transitive graph, then
θ(pc) = 0.

The proof of this theorem is in two steps: first we show that the number
of infinite clusters at pc cannot be 1, and then we show that the number of
infinite components at pc cannot be ∞.
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We work with bond percolation, the proofs for site percolation are similar.

11.3.1 No unique infinite component, kpc 6= 1

Itai Benjamini

Russ Lyons

Yuval Peres

Oded Schramm (1961–2008)

Lemma 11.3.2 If Ω is an invariant percolation on a transitive unimodular
graph G such that all components of Ω are finite, then E[degΩ(x)] ≤
degG−Φ(G).

Consequently, if (Ωε)ε are a sequence of invariant bond percolation con-
figurations such that limε→0 P[Ωε(e) = 1] = 1, and if G is non-amenable,
then there exists ε > 0 such that Ωε a.s. has an infinite component.

Proof. Note that for a finite set S,

degG |S| − |∂S| =
∑
x∈S

∑
y∼x

(1− 1{y 6∈S}) =
∑
x∈S

degS(x).

Thus, for any finite set S,

1

|S|
∑
x∈S

degS(x) ≤ degG−Φ(G).

Since all components of Ω are finite, define

F (x, y,Ω) =
degΩ(x)

|C(x)| · 1{x↔y (in Ω) }.

So f(x, y) := E[F (x, y,Ω)] is an invariant function. By the mass transport
principle,

E[degΩ(x)] =
∑
y

f(x, y) =
∑
y

f(y, x) = E 1
|C(x)|

∑
y↔x

degΩ(y) ≤ degG−Φ(G).

Now if G is non-amenable, then the above estimate becomes non-trivial, and
it is a uniform estimate over all invariant percolation configurations.

Thus, if we choose ε small enough so that P[Ωε(e) = 1] > 1 − deg−1
G Φ(G)

then
E[degΩε(x)] =

∑
y∼x

P[Ωε(x ∼ y) = 1] > degG−Φ(G),

which implies that Ωε cannot be composed of only finite components. ut
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Theorem 11.3.3 Let G be a non-amenable unimodular transitive graph.
Let kpc be the number of infinite components in bond percolation on G
with parameter pc. Then P[kpc = 1] = 0.

Proof. Recall the natural coupling of percolation configurations Ωp. If kpc =
1 then we can let Ω be the unique infinite component in Ωpc .

For a vertex x let c(x) be the set of all vertices in Ω that are closest to x in
the graph metric on G.

For ε > 0 define the following configuration Hε ∈ {0, 1}E(G): Hε(e) = 1 if
and only if e = x ∼ y such that

• distG(x,Ω) < ε−1, distG(y,Ω) < ε−1.

• For any z ∈ c(x), w ∈ c(y), we have Cpc−ε(z) = Cpc−ε(w).

Two observations: if ε > δ then Hε ≤ Hδ. Also, for any e = x ∼ y, there
exists a small enough ε > 0 so that Hε(e) = 1; this is because the sets
c(x), c(y) are finite, and in Ω, so for small enough ε they will be connected
in Ωpc−ε. Here is where we use the assumption that kpc = 1, in the
fact that Ω is one big connected graph. Thus,

lim
ε→0

P[Hε(e) = 1] = 1.

By Lemma 11.3.2 this implies that for some small enough ε > 0, Hε contains
an infinite component, and consequently, an infinite simple path. Suppose
that (x0, x1, . . .) is an infinite simple path such that Hε(xj ∼ xj+1) = 1 for
all j.

First, for any j, dist(c(xj), xj) < ε−1, so |c(xj)| ≤ |B(o, ε−1)|, which is a
uniform bound. Thus, there must be a subsequence (jk)k such that (c(xjk))k
are all distinct. That is |⋃j c(xj)| =∞.

Also, for any j, we have that any two vertices z ∈ c(xj) and w ∈ c(xj+1)
are connected in Ωpc−ε. So all (c(xj))j must be in the same component of
Ωpc−ε. That is,

⋃
j c(xj) is contained in a component of Ωpc−ε.

So Ωpc−ε contains an infinite component, contradicting the definition of pc.
ut
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11.3.2 No infinitely many infinite components, kpc 6=∞

Recall the definition of a r-trifurcation point x; this event denoted by Ψr(x).
Ψr(x) = {Mr ≥ 3} where Mr = (Nr)0,E(B(x,r)) and Nr is the number of
infinite components intersecting the ball of radius r; that is, Ψr(x) is the
event that when forcing all edges in B(x, r) to be closed, there are at least
3 infinite paths from ∂B(x, r). This event is independent of FE(B(x,r)).

Lemma 11.3.4 Let Ω be an invariant percolation on a unimodular tran-
sitive graph G. Then, if P[Ψ1(x), |CΩ(x)| =∞] > 0 then

E[degΩ(x) | |CΩ(x)| =∞] > 2.

Proof. Define R(x, y,Ω) to be the indicator of the event that there exists
a simple infinite path of the form (x = x0, y = x1, x2, x3, . . .), such that
Ω(xn ∼ xn+1) = 1 for all n. Set

F (x, y,Ω) =

{
2R(x, y,Ω) if R(y, x,Ω) = 0,

R(x, y,Ω) otherwise

So F is invariant and thus also f(x, y) = E[F (x, y,Ω)]. (That is, F (x, y,Ω) =
1 if one can go to infinity from x in two directions, one through y; if one can
go to infinity through y but only in one direction, then F (x, y,Ω) = 2.)

Note that F (x, y,Ω) + F (y, x,Ω) = 2 · 1{Ω(x∼y)=1}1{|CΩ(x)|=∞}, so∑
y

F (x, y,Ω) + F (y, x,Ω) = 2 degΩ(x)1{|CΩ(x)|=∞}.

The Mass Transport Principle now gives that

E[degΩ(x)1{|CΩ(x)|=∞}] =
1

2

∑
y

f(x, y)+f(y, x) =
∑
y

f(x, y) = E
∑
y

F (x, y,Ω).

Whenever |CΩ(x)| = ∞ and x is a trifurcation point, we must have that∑
y F (x, y,Ω) ≥ 3. Also, for any x such that |CΩ(x)| =∞, there must exist

at least on way of going from x to infinity, so
∑

y F (x, y,Ω) ≥ 2. Thus,

E[degΩ(x)1{|CΩ(x)|=∞}] =
∑
y

E[F (x, y,Ω)1{Ψ1(x),|CΩ(x)|=∞}] + E[F (x, y,Ω)1{Ψ1(x)c,|CΩ(x)|=∞}]

≥ 3P[Ψ1(x), |CΩ(x)| =∞] + 2P[Ψ1(x)c, |CΩ(x)| =∞]

= 2P[|CΩ(x)| =∞] + P[Ψ1(x), |CΩ(x)| =∞] > 2P[|CΩ(x)| =∞].
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ut

Lemma 11.3.5 Let Ω be an invariant percolation on a unimodular transi-
tive graph G. Suppose that all components of Ω are trees (possibly finite)
a.s. Then, if P[Ψ1(x), x↔∞] > 0 then there a.s. exists some component
C of Ω such that for Bernoulli bond percolation on C, pc < 1.

Proof. Since P[Ψ1(x), x↔∞] > 0, we know that

m := E[degΩ(x) | x↔∞] > 2.

Choose p < 1 but large enough so that mp > 2 (it is important here that
m > 2 and not just m ≥ 2).

Let Ω′ be Bernoulli bond p-percolation on Ω. Compute:

E[degΩ′(x) | |CΩ(x)| =∞] =
∑
y∼x

P[Ω(x ∼ y) = 1 | |CΩ(x)| =∞]p

= E[degΩ(x) | |CΩ(x)| =∞]p = mp > 2.

A combinatorial observation: If T is a finite tree then |E(T )| = |T | − 1. So

2|T | > 2|E(T )| =
∑
x,y∈T

1{x∼y} =
∑
x∈T

degT (x).

Now, if all components of Ω′ are finite a.s., then we may define

F (x, y,Ω) =
degΩ′(x)

|CΩ′(x)| · 1{y∈CΩ′ (x)}1{|CΩ(x)|=∞},

similarly to Lemma 11.3.2. As in that lemma, by mass transport we get
that

E[degΩ′(x)1{|CΩ(x)|=∞}] = E[ 1
|CΩ′ (x)|

∑
y∈CΩ′ (x)

degΩ′(y) · 1{|CΩ(x)|=∞}]

< 2P[|CΩ(x)| =∞],

since all components of Ω′ are finite trees a.s.

Thus, because E[degΩ′(x) | |CΩ(x)| = ∞] > 2, we get that Ω′ must contain
some infinite component. Ω′ is Bernoulli bond percolation on Ω, so some
component of Ω must admit pc < 1. ut
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Definition 11.3.6 Recall the i.i.d. random variable U(e)e defining the
natural coupling (Ωp)p of bond percolation. For p define MSF = MSFp
to be the following configuration: MSF(x ∼ y) = 1 if and only if Ωp(x ∼
y) = 1 and for any finite path γ : x → y such that γ ⊂ Ωp there exists
0 ≤ j ≤ |γ| − 1 such that U(γj ∼ γj+1) ≥ U(x ∼ y).

Exercise 11.10 Show that MSF is always a forest (i.e. does not contain
a cycle). � � �

Exercise 11.11 Show that MSF is an invariant percolation. � � �

Lemma 11.3.7 If G is a transitive graph and MSF = MSFpc for pc =
pbondc (G), then a.s. for every x the connected component CMSF(x) of x in
MSF is a spanning tree of Cpc(x).

Specifically, if x is a trifurcation point in an infinite component of Ωpc

then it is also a trifurcation point in an infinite tree in MSFpc .

Proof. It suffices to prove that for any x ∼ y ∈ Ωpc . we have y ↔ x in MSF.

Fix x ∼ y ∈ Ωpc . Let u = U(x ∼ y). We will show that if x 6↔ y in MSF
then Cu(x) is infinite.

Assume that y 6↔ x in MSF.

Since x ∼ y 6∈ MSF, it must be that there exists a path α : x → y with
α ⊂ Cu(x).

Now, suppose we have some simple path α : x → y with α open in Ωu. If
α is open in MSF then x↔ y in MSF, contradicting the assumption. Thus,
there must exists an edge α` ∼ α`+1 6∈ MSF. However, by definition this
provides a simple path γ : α` → α`+1 such that

max
0≤j≤|γ|−1

U(γj ∼ γj+1) < U(α` ∼ α`+1) ≤ u

(because α is open in Ωu). So E(α ∪ γ) \ {α` ∼ α`+1} is open in Ωu, and
thus contains a simple path β : x→ y which is open in Ωu. In fact,

β = (α0, . . . , α` = γ0, . . . , γ|γ| = α`+1, . . . , α|α|),

which implies that |β| = |α|+ |γ| − 1 > |α|.
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By induction, this implies that for any k there is a path α : x→ y such that
α is open in Ωu and |α| > k. So |E(Cu(x))| > k for any k, which implies
that |Cu(x)| =∞.

We conclude if x ∼ y ∈ Ωpc and x 6↔ y in MSF then |Cu(x)| = ∞ for
u = U(x ∼ y). Since U(x ∼ y) 6= pc a.s., we have that

P[x ∼ y ∈ Ωpc and x 6↔ y in MSF ] ≤ P[∃ u < pc , |Cu(x)| =∞] = 0.

So we have shown that a.s. for any x ∼ y ∈ Ωpc also x ↔ y in MSF. This
implies by an exercise below that CMSF(x) is a spanning tree of Cpc(x), for
any x a.s.

Finally, if x is a trifurcation point in Ωpc , then |Cpc(x)| = ∞ and removing
the edges adjacent to x would split Cpc(x) into at least 3 infinite components.
If T (x) is the spanning tree of Cpc(x) in MSF, then removing the edges
adjacent to x would also split T (x) into 3 infinite components. ut

Exercise 11.12 Show that if for any x ∼ y ∈ Ωp we have x ↔ y in
MSFp, then for every connected component Cp(x) in Ωp, the component
CMSFp(x) of x in MSFp is a spanning tree of Cp(x). � � �

Exercise 11.13 Show that P[∃ u < pc , |Cu(x)| =∞] = 0 � � �

Theorem 11.3.8 Let G be a non-amenable unimodular transitive graph.
Let kpc be the number of infinite components in bond percolation on G
with parameter pc. Then, P[kpc =∞] = 0.

Proof. Recall the natural coupling of configurations Ωp. We assume that
kpc =∞ for a contradiction.

Since kpc = ∞, we know that there exists r > 0 such that Ppc [Ψr(x)] > 0.
Now the event Ψr(x) is independent of FE(B(x,r)). Any configuration on
the edges of E(B(x, r)) occurs with probability at least q := (pc ∧ (1 −
pc))

|E(B(x,r))| > 0 (since kpc =∞, we have pc < 1). Thus, if we connect any
three infinite components from ∂B(x, r) by open paths inside B(x, r), we
get that P[∃ y ∈ B(x, r) : Ψ1(y), y ↔ ∞ | Ψr(x)] ≥ q > 0. This implies
that there exists y ∈ B(x, r) such that P[Ψ1(y), y ↔ ∞] > 0. Transitivity
implies that this holds for any vertex, and specifically P[Ψ1(x), x↔∞] > 0.
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Now let MSF = MSFpc as in Lemma 11.3.7. So with positive probability x is
a trifurcation point in an infinite tree of MSF, by Lemma 11.3.7. Now, using
Lemma 11.3.5, MSF a.s. contains some component C such that pbondc (C) < 1.
But C is a subgraph of some connected component C′ of Ωpc . So pbondc (C′) < 1
as well. It is an exercise to show that this is impossible. ut

Exercise 11.14 Show that if C is a connected component of Ωpc then
pc(C) = 1. � � �



Chapter 12

Site and Bond Percolation

12.1 pbondc ≤ psitec

Theorem 12.1.1 Let G be an infinite connect bounded degree graph.
Then, for any o ∈ G, and p ∈ (0, 1), θsiteG,o(p) ≤ pθbondG,o (p) and so pbondc (G) ≤
psitec (G).

Proof. We couple a configuration ω ∈ {0, 1}V (G) with η ∈ {0, 1}E(G) so that
ω is site percolation, η is bond percolation, and if o ↔ ∞ in ω then also
ω ↔∞ in η.

Let V (G) = {o = x0, x1, . . . , } be some ordering of V (G) and let (Be)e∈E(G)

be i.i.d. Bernoulli-p random variables.

Consider any configuration ω ∈ {0, 1}V (G). We define inductively a sequence
of vertices (vk)k.

Set V1 = {o} ,W1 = ∅, n1 = 0 and v1 = xn1 = o.

Suppose Vk∪Wk = {v1, . . . , vk} have been defined. Let nk+1 be the smallest
index of a vertex x ∈ ∂Vk\(Vk∪Wk). Set vk+1 = xnk+1

. Let ek+1 = vj ∼ vk+1

for 1 ≤ j ≤ k the smallest index such that vj ∼ vk+1 and vj ∈ Vk. Set
η(ek+1) = ω(vk+1). Set also

(Vk+1,Wk+1) =

{
(Vk+1 ∪ {vk+1} ,Wk) if ω(vk+1) = 1,

(Vk+1,Wk ∪ {vk+1}) if ω(vk+1) = 0.

112
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If there does not exist nk+1, i.e. if ∂Vk \ (Vk ∪ Wk) = ∅ then stop the
procedure.

Once the procedure terminates, for all e ∈ E(G) such that η(e) is not defined
let η(e) = Be.

Note that if ω is p-site percolation then η is p-bond percolation.

Also, if |Cω(o)| = ∞, then at each step we may find a new vertex x ∈
∂Vk \ (Vk ∪Wk) that has ω(x) = 1, so for some j > k we will have ω(vj) = 1
and vj ∈ Vj . That is, |Cω(o)| =∞ implies that |Vk| → ∞. Since Vk ⊂ Cη(o)
for all k, we get that |Cω(o)| =∞ implies that |Cη(o)| =∞.

Moreover, if |Cω(o)| =∞ then ω(o) = 1. Since η is independent of ω(o), we
have that

θsiteG,o(p) = P[|Cω(o)| =∞] ≤ P[ω(o) = 1, |Cη(o)| =∞] = pθbondG,o (p).

ut

12.2 Bounds for Site in Terms of Bond
Lemma 12.2.1 Let G be an infinite connected graph of bounded degree.
Suppose that (Ω(x))x∈V (G) are independent Bernoulli random variables
such that supx E[Ω(x)] = p. Then, there exists a coupling of Ω and Ωp

such that Ω ≤ Ωp (where Ωp is p-site percolation).

Proof. For every x let px = E[Ω(x)]. Let (U(x))x be independent U [0, 1]
random variables. Set Ω′(x) = 1{U(x)≤px} and Ωp(x) = 1{U(x)≤p}.

It is immediate that Ω′ ≤ Ωp.

Also, Ω′ has the same law as Ω. ut

Theorem 12.2.2 Let G be an infinite connect graph of maximal degree d.
Then for any p ∈ (0, 1) and o ∈ G,

θbondG,o (p) ≤ θsiteG,o(1− qd−1)



114 CHAPTER 12. SITE AND BOND PERCOLATION

where q = 1− p. Consequently, psitec ≤ 1−
(
1− pbondc

)d−1
.

Proof. Let V (G) = {o = x0, x1, x2, . . .} be some ordering of V (G). Let η ∈
{0, 1}E(G). Let (Bx)x∈V (G) be i.i.d. Bernoulli-(1− qd−1) random variables.

Start with V0 = W0 = ∅. If η(x1, y) = 0 for all y ∼ x1 then stop the
procedure with the empty sequence, and let ω(x) = Bx for all x. If there
exists n1 such that η(x1 ∼ xn1) = 1 then set v1 = xn1 for n1 the smallest
such index, and V1 = {o, v1} ,W1 = ∅.

Given Vk ∪Wk = {o, v1, . . . , vk} choose nk+1 to be the smallest index such
that xnk+1

∈ ∂Vk \ (Vk ∪Wk). If no such vertex exists, then stop the proce-
dure. When such nk+1 exists, set vk+1 = xnk+1

.

If there exists y 6∈ Vk ∪Wk such that η(vk+1 ∼ y) = 1 then set ω(vk+1) = 1.
Otherwise set ω(vk+1) = 0. Also set

(Vk+1,Wk+1) =

{
(Vk+1 ∪ {vk+1} ,Wk) if ω(vk+1) = 1,

(Vk+1,Wk ∪ {vk+1}) if ω(vk+1) = 0.

The important observation here is the following: Conditioned on Vk,Wk, vk+1,
the conditional probability that ω(vk+1) = 1 is 1− qd′ ≤ 1− qd−1 for some
d′ ≤ d− 1.

Finally, for all x such that ω(x) is not defined, set ω(x) = Bx.

Now, if η is p-bond percolation then (ω(x))x are independent Bernoulli ran-
dom variables, with E[ω(x)] ≤ 1− qd−1 for all x.

Also, if |Cη(o)| = ∞, then at each step we can always find an edge x ∼ y
such that x ∈ ∂Vk \ (Vk ∪Wk), y 6∈ Vk ∪Wk, and η(x ∼ y) = 1. So at some
j > k we will have ω(vj) = 1 and vj ∈ Vj . Since Vk ⊂ Cω(o) for all k, we
have that |Cη(o)| =∞ implies that |Cω(o)| =∞.

Thus,

θbondG,o (p) = P[|Cη(o)| =∞] ≤ P[|Cω(o)| =∞] ≤ θsiteG,o(1− qd−1),

the last inequality by Lemma 12.2.1.

We conclude that if p′ := 1− (1− p)d−1 > 1− (1− pbondc )d−1 then p > pbondc ,
so θsiteG,o(p

′) > 0 and psitec ≤ p′ = 1− (1− p)d−1. Taking infimum over all such
p′ completes the proof. ut
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Let us summarize these two sections with:

Theorem 12.2.3 Let G be an infinite connected graph of maximal degree
d. Then,

pbondc ≤ psitec ≤ 1− (1− pbondc )d−1.



Chapter 13

Uniqueness and Amenability

13.1 Uniqueness Phase

Recall our coupling of all percolation spaces together by assigning i.i.d. uniform-
[0, 1] random variables (U(x))x to the vertices of G, and the configurations
Ωp(x) = 1{U(x)≤p}, so that Ωp has law Psite

p . Let us also use the notation
Cp(x) to denote the component of x in the subgraph Ωp.

For a configuration ω we define J(ω) to be the union of all infinite compo-
nents in ω.

Proposition 13.1.1 If G is a transitive graph and q ≥ p > 0 such that
θ(p) > 0, then D = dist(Cq(x), J(Ωp)) satisfies

P[D ≤ 2 | |Cq(x)| =∞] = 1.

Proof. We will define a process which will be helpful in analyzing the infinite
components of percolation. This process is called invasion percolation.
We will define it for site percolation, the corresponding process for bond
percolation being an obvious analogue.

Consider (Ux)x∈G i.i.d. random variables each uniform on [0, 1]. Define a
growing sequence of subsets (In(x))n as follows. Start with I0(x) = {x}.
Given In(x) define In+1(x) = In(x) ∪ {y} where y ∈ ∂In(x) is the vertex
adjacent to In(x) with the minimal label Uy. That is, Uy < Uz for all
z ∈ ∂In(x). (Recall ∂S = {y ∼ S : y 6∈ S}.) Set I(x) =

⋃
n In(x).

116
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Now, fix ε > 0 and let r = r(ε) > 0 be large enough so that Pp[Br ↔∞] ≥
1− ε.

For a finite set of vertices S ⊂ G let A(S) be the event that ∂S ↔∞ in Ωp.
Note that A(S) ∈ TS . By transitivity, if Br(y) ⊂ S̄ then P[A(S̄)] ≥ 1 − ε
(where S̄ = S ∪ ∂S). Also, {Ik(x) = S} ∈ FS̄ .

Let
Γr = {S ⊂ G | |S| <∞ , ∃ y ∈ G , Br(y) ⊂ S}.

Thus, for any S ∈ Γr we have

P[A(Īk(x)) , Ik(x) = S] = P[A(S̄)] · P[Ik(x) = S] ≥ (1− ε) · P[Ik(x) = S],

and summing over all S ∈ Γr we get

P[A(Īk(x))] ≥ P[A(Īk(x)) , Ik(x) ∈ Γr] ≥ (1− ε) · P[Ik(x) ∈ Γr].

Also, by an exercise below, there exist k such that P[Ik(x) ∈ Γr] ≥ 1 − ε.
Thus,

P[A(Īk(x))] ≥ (1− ε)2.

Finally, note thatA(Īk(x)) implies that dist(I(x), J(Ωp)) ≤ dist(Ik(x), J(Ωp)) ≤
2. Thus,

P[dist(I(x), J(Ωp)) ≤ 2] ≥ (1− ε)2 → 1,

as the left-hand side does not depend on ε > 0.

Since I(x) ⊂ Cq(x) whenever Cq(x) is infinite (exercise), the proof is complete
because

P[dist(Cq(x), J(Ωp)) ≤ 2
∣∣ |Cq(x)| =∞]

≥ P[dist(I(x), J(Ωp)) ≤ 2
∣∣ |Cq(x)| =∞] = 1.

ut

Exercise 13.1 Show that if Cp(x) is infinite then I(x) ⊂ Cp(x). � � �

Solution to ex:1. :(
If I(x) 6⊂ Cp(x), then there exists a minimal k such that y ∈ Ik(x) \ Ik−1(x) and y 6∈ Cp(x).
Note that since k was a minimal such time, Ik−1(x) ⊂ Cp(x). Thus, if Uy ≤ p then y ∈ Cp(x)
as well, since y ∼ Ik−1(x). So it must be that Uy > p.

If Cp(x) 6⊂ Ik−1(x), then there exists z ∈ ∂Ik−1(x) that is connected to x, i.e. z ∈ Cp(x).
Specifically, Uz ≤ p < Uy , contradicting the fact that y ∈ Ik(x).
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We conclude that it must be that for this minimal k we have Ik−1(x) = Cp(x), implying that
Cp(x) is finite. :) X

Exercise 13.2 Show that for any ε > 0 and any radius r > 0 there exist
k such that P[∃ y ∈ G , Br(y) ⊂ Ik(x)] ≥ 1− ε. � � �

Solution to ex:2. :(
Fix ε > 0 and r > 0. Let Sm = {y : dist(x, y) = m}. For ever n let

τn = inf{k : dist(Ik(x), S2n(r+1)) = r + 1}.

Note that since |Ik(x)| = k + 1, it must be that τn < |B2n(r+1)|. Choose some Yn =
Yn(Iτn (x)) so that dist(Iτn (x), Yn) = r+1 and Yn ∈ S2n(r+1). Note that Br(Yn)∩∂Iτn (x) 6=
∅. Also, note that Iτn (x), τn, Yn are all measurable with respect to FB(2n−1)(r+1)(x).

Let
An = {∀ z ∈ Br(Yn) , Uz ≤ pc

2
}.

Since {Yn = y}, An−1, . . . , A1 ∈ FB(2n−1)(r+1)
(which is independent of FBr(y) for any

y ∈ S2n(r+1)),

P[An | Yn = y , Acn−1, . . . , A
c
1]

= P[∀ z ∈ Br(y) , Uz ≤ pc
2
| Yn = y , Acn−1, . . . , A

c
1] = α :=

( pc
2

)|Br| > 0.

Averaging over y ∈ S2n(r+1), we have that P[
⋂
n A

c
n] = 0.

Now, since Br(Yn) ∩ ∂Iτn (x) 6= ∅, the event An implies that for all k > τn, either Br(Yn) ⊂
Ik(x) or there exists z ∈ Br(Yn) ∩ ∂Ik(x). Thus, if Br(Yn) 6⊂ I(x) then it must be that
for all k > 0 we added a vertex vk ∈ Iτn+k(x) \ Iτn+k−1(x) and there exists some vk 6=
z ∈ Br(Yn) ∩ ∂Iτn+k−1(x). But this implies that Uvk < Uz ≤ pc

2
. Note that the set

I(x) \ Iτn (x) = {v1, v2, . . .} is an infinite set, which is composed of an infinite connected set
I(x) with a finite set Iτn (x) removed. This implies that I(x) \ Iτn (x) = {v1, v2, . . .} contains
some infinite component, C ⊂ {v1, v2, . . .} whose labels are all Uv ≤ pc

2
, v ∈ C. This has

probability 0 since pc
2
< pc.

So if we let E be the probability 1 event that all components in Ωpc/2 are finite, we have that
E ∩An ⊂ {Br(y) ⊂ I(x)}. However, this gives

P[∃ y , Br(y) ⊂ I(x)] ≥ P[
⋃
n

An ∩ E] = 1.

:) X

Exercise 13.3 Let q > p be such that θ(p) > 0. Recall that J(Ωp) is the
union of all infinite components of Ωp.

Show that if dist(Cq(x), J(Ωp)) ≤ 1 then Cq(x) contains an infinite com-
ponent of Ωp. � � �
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A technical lemma we will require, which is a property sometimes known as
tolerance.

We work in some product space [0, 1]V (e.g. when V = V (G)). The cylinder
σ-algebras FS are defined as in the {0, 1}V case, except with configurations
in [0, 1]V . For any subset S define

AS :=
{
ω ∈ [0, 1]V : ∃ ω′ ∈ A , ω

∣∣
S

= ω′
∣∣
S

}
=
⋃
ω∈A

Cω,S .

So AS ∈ FS . Since A = AS ∩ AV \S , and since FS ,FV \S are independent,
we get that P[A] = P[AS ] ·P[AV \S ]. So if P[A] > 0 then both P[AS ] > 0 and
P[AV \S ] > 0.

Lemma 13.1.2 (Tolerance Lemma) Let S be a finite set and let 0 ≤ p <
q ≤ 1. LetA be some event and letAS,p,q = AV \S∩{∀ s ∈ S , U(s) ∈ (p, q]}.

If P[A] > 0 then P[AS,p,q] > 0.

That is, the vertex labels in some finite set can be changed to be in [p, q]
without ruining the positivity of the given event.

Proof. Since S is finite, and since {∀ s ∈ S , U(s) ∈ [p, q]} ∈ FS ,

P[AV \S ,∀ s ∈ S U(s) ∈ [p, q]] = P[AV \S ] · (q − p)|S|

which is positive whenever P[A] > 0 and q > p and |S| <∞. ut

Theorem 13.1.3 Let G be a transitive graph.

Under the standard coupling of percolation, for any q > p such that
θ(p) > 0, any infinite component of Ωq must contain an infinite component
of Ωp.

Consequently, if Ωp has a unique infinite component a.s. then so does Ωq.

Proof. Fix x. Let D = dist(Cq(x), J(Ωp)). By an exercise above, it suffices
to prove that

P[D ≤ 1
∣∣ |Cq(x)| =∞] = 1.
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By the invasion percolation argument we know that P[D ≤ 2 | |Cq(x)| =
∞] = 1.

Let J = J(Ωp) and let M = Cq(x)\ J̄ (where J̄ = J ∪∂J and ∂J = {y 6∈ J :
y ∼ J}). Consider the set Y = ∂J ∩ ∂M . Every y ∈ Y admits y ∼ Cq(x)
and y ∼ J . Moreover, since Y ⊂ ∂J , we have that conditioned on (Uz)z 6∈J̄
and Ωp, the distribution of (Uy)y∈Y is that of independent random variables,
each uniform on (p, 1]. (Indeed, they are condition to be in ∂J , so cannot
be at most p.)

Now, assume there exists y ∈ Y such that Uy ≤ q. Because y ∈ ∂Cq(x), this
implies that y ∈ Cq(x). Because y ∈ ∂J , we can conclude that D ≤ 1. That
is,

{D > 1} ⊂
⋂
y∈Y
{Uy > q}.

We may thus compute,

P[D > 1
∣∣ Ωp , Uz, z 6∈ J̄ ] ≤

( 1−q
1−p
)|Y | ≤ 1{|Y |<∞},

and by taking expectations,

P[D > 1 , |Cq(x)| =∞] = P[D > 1 , |M | =∞]

≤ P[|Y | <∞ , |M | =∞] ≤ P[|Y | <∞ , |Cq(x)| =∞].

(We have used that on the event D > 1 we have M = Cq(x).)

Finally, we show that P[|Y | <∞ , |Cq(x)| =∞] = 0.

Indeed, assume for a contradiction that P[|Y | = n , |Cq(x)| = ∞] > 0
for some n ≥ 1. This implies that there exist y1, . . . , yn ∈ G such that
for the event A = {Y = {y1, . . . , yn} , |Cq(x)| = ∞} we have P[A] > 0.

Let Z = {y1, . . . , yn} = {yj , z ∼ yj : j = 1, . . . , n}. However, by the
Tolerance Lemma, we may force Uz > p for all z ∈ Z and still keep a
positive probability, so

0 < P[AZ,p,1] ≤ P[D > 2 , |Cq(x)| =∞],

which contradicts the argument given by invasion percolation.

Also, |Y | = 0 implies D > 2, so again P[|Y | = 0 , |Cq(x)| =∞] = 0.

We conclude that
P[|Y | <∞ , |Cq(x)| =∞] = 0.

ut
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Recall the number kp of infinite components which is a.s. constant, and a.s.
in the set {0, 1,∞}. Theorem 13.1.3 tells us that if p < q and kp = 1 then
kq = 1 as well. So the quantity

pu = pu(G) := inf {p : kp = 1} = sup {p : kp =∞}

is well defined. Thus, there exists at most three phases: no infinite com-
ponents, then infinitely many infinite components, then a unique infinite
component.

There is a lot of research when one of these phases is empty. It is also very
difficult to understand what happens at the critical points.

Of course, we have already seen that pu = pc when the graph is amenable.
In the non-amenable case, it may be that pu = 1 so we always have infinitely
many infinite components.

Exercise 13.4 Show that for the d-regular tree pu(Td) = 1. � � �

13.2 Uniqueness and Amenability

Recall that the Burton-Keane Theorem tells us that pc = pu for any amenable
transitive graph. Complementing the amenable case, is the following theo-
rem by Pak and Smirnova-Nagnibeda:

Theorem 13.2.1 Let G be a non-amenable finitely generated group. Then
there exists a Cayley multi-graph such that on this multi-graph pbondc <
pbondu .

X A caveat, perhaps, is that the Cayley graph constructed may be a multi-

graph. This is the reason we work with bond percolation, since site perco-
lation does not care about multiple edges.

It is in fact a conjecture by Benjamini and Schramm that any non-amenable
Cayley graph has pc < pu. That is, together with the Burton-Keane Theo-
rem, the conjecture becomes: G is amenable if and only if pc = pu.
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13.3 Percolation and Expansion

Recall the definition ∂S = {x 6∈ S : x ∼ S} and Φ = Φ(G) = inf |∂S||S| where
the infimum is over finite connected subsets of G. A non-amenable graph
is such that Φ > 0. In other words, any subset S (perhaps not connected)
admits |∂S| ≥ Φ|S|.

Theorem 13.3.1 For percolation on G,

pc(G) ≤ 1

1 + Φ(G)
.

X So any non-amenable graph has a non-trivial estimate pc < 1.

Proof. Enumerate the vertices of G by V (G) = {o = v1, v2, . . . , }. Let ω be
a configuration sampled from Pp; so (ω(vk))k are i.i.d. Bernoulli-p random
variables.

Define a sequence of random variables (ak)k as follows. Set a1 = ω(o) =
ω(v1) and n1 = 1. Given that we have defined a1, . . . , ak for some k ≥ 1,
define ak+1 = vnk+1

where nk+1 is chosen as follows: We always denote
Vk = {n1, . . . , nk}; these are the indices of the vertices that have already
been examined. Also denote Ok = {vm : m ∈ Vk, ω(vm) = 1}; these are
the open vertices that have already been examined.

Case 1: ∂Ok 6⊂ {vm : m ∈ Vk}. Then there exists a vertex vm such that
m 6∈ Vk and vm ∼ Ok. Let nk+1 be the smallest index such that
vnk+1

∼ Ok and nk+1 6∈ Vk.

Case 2: ∂Ok ⊂ {vm : m ∈ Vk}. Then, set nk+1 to be the smallest index not
in Vk.

This defines a sequence of i.i.d. Bernoulli-p random variables (ak)k.

Suppose that for any m ∈ Vk we have that |C(vm)| <∞. Then at some time
j > k we must have examined all vertices in C(vm), so there is a j > k such
that ∂Oj ⊂ {vi : i ∈ Vj}.
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Thus, if there are no infinite components, then there is an infinite sequence
of times (kj)j such that for all j, ∂Okj ⊂

{
vi : i ∈ Vkj

}
.

Now, if ∂Ok ⊂ {vm : m ∈ Vk} then Ok ] ∂Ok ⊂ {vm : m ∈ Vk}, so

(1 + Φ)|Ok| ≤ |Ok|+ |∂Ok| ≤ |Vk| = k.

Also,
∑k

j=1 aj = |Ok|. So if ∂Ok ⊂ {vm : m ∈ Vk} then

1

k

k∑
j=1

aj ≤
|Ok|

(1 + Φ)|Ok|
=

1

1 + Φ
.

We conclude that the event that all components are finite implies that there
exists an infinite sequence (kj)j such that for all j,

1

kj

kj∑
i=1

ai ≤
1

1 + Φ
.

That is, {∀ x , x 6↔ ∞} ⊂
{

lim inf 1
k

∑k
j=1 aj ≤ 1

1+Φ

}
. Now, the law of

large numbers states that 1
k

∑k
j=1 aj converges a.s. to p. Thus, for any

p > 1
1+Φ we get that

P[∀ x , x 6↔ ∞] ≤ P[lim inf 1
k

∑
aj ≤ 1

1+Φ ] ≤ P[lim inf 1
k

∑
aj < p] = 0.

That is, pc ≤ 1
1+Φ .

Now, there was nothing special here about site percolation. For bond perco-
lation we could have defined ak by exploring the edges coming out of Ok. ut

13.4 Uniqueness and Self-Avoiding Polygons

A self avoiding polygon is a simple cycle in the graph. That is, a path
γ = (γ0, . . . , γn) such that γi 6= γj for all 0 ≤ i 6= j < n and γ0 = γn.

Fix some vertex o ∈ G and let SAPn be the set of all self avoiding polygons
γ of length n, with γ0 = o. Let SAWn be the set of all self-avoiding paths
of length n started at o. (Recall that a self avoiding path γ is a path such
that γi 6= γj for all i 6= j.)
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We will be interested in convergence of the series
∑

n |SAWn|zn. The Cauchy-
Hadamard theorem gives us the rate of convergence of this series: it is the
reciprocal of

µ(G) := lim sup
n→∞

|SAWn|
1
n ,

which we called the connective constant.

Exercise 13.5 Show that |SAPn| ≤ |SAWn−1|. � � �

Lemma 13.4.1 Let p < 1
µ(G) . Then,

lim
r→∞

sup
x 6∈B(o,r)

Pp[o↔ x] = 0.

Consequently, it is impossible that p > pu for such a p, and so pu ≥ 1
µ(G) .

Proof. Let CVp(o, x) be the set of open pivotal vertices for o ↔ x (in the
percolation Ωp). That is, v ∈ CVp(o, x) if

{o↔ x} ∩ {o 6↔ x}0,v = {v is open } ∩ {o↔ x}1,v ∩ {o 6↔ x}0,v .

Define

mk(r) = Pp[∃x 6∈ B(o, r) , |CVp(o, x)| ≤ k, o↔ x].

Note that if o ↔ x then o, x ∈ CVp(o, x). So if |CVp(o, x)| = 2 then
CVp(o, x) = {o, x} and there must exist two disjoint paths γ, γ′ : o → x
that are open in Ωp; otherwise there would be another pivotal vertex for
o, x. (This is Menger’s theorem.) That is, o, x are in a Ωp-open self avoiding
polygon, which is just the composition of γ and the reverse of γ′. So we
conclude that mk(r) = 0 for k < 2, and

m2(r) ≤ P[o is in a Ωp-open self avoiding polygon of length at least 2r]

≤
∑
n≥2r

|SAPn|pn+1 ≤
∑
n≥2r

|SAWn−1|pn+1.

When p < 1
µ(G) we get that the above series is summable and so m2(r)→ 0

as r →∞.

Let R > r and x 6∈ B(o,R). Suppose that o ↔ x. If |CVp(o, x)| ≤ k + 1,
then
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• Case 1: CVp(o, x) ∩ B(o, r) = {o}. So there exists y 6∈ B(o, r) such
that CVp(o, y) = {o, y} and y ↔ o.

• Case 2: |CVp(o, x)∩B(o, r)| ≥ 2. Then |CVp(o, x)∩B(o, r)c| ≤ k− 1.
So there must exist o 6= y ∈ B(o, r) such that |CVp(y, x)| ≤ k and
y ↔ x.

We conclude that

mk+1(R) ≤ m2(r) + |B(o, r)| ·mk(R− r).

A simple induction on k now shows that mk(r)→ 0 as r →∞. Indeed, this
holds for k = 2. For general k: for any ε > 0 there exists r so that m2(r) < ε

2
and also there exists R > r large enough so that mk(R− r) < |B(o, r)|−1 ε

2 ,
so that mk(R) < ε. This completes the induction.

We conclude that for any r > 0 and k ≥ 2, for any x 6∈ B(o, r),

Pp[x ∈ Cq(o)] ≤ mk(r) + P[x ∈ Cq(o), |CVp(o, x)| ≥ k + 1].

Note that for q < p,

P[∀ v ∈ C , U(v) ≤ q | Ωp] = 1{∀ v∈C , Ωp(v)=1} ·
(
q
p

)|C|
.

So averaging over Ωp ∈ {CVp(o, x) = C},

P[∀ v ∈ C , U(v) ≤ q | CVp(o, x) = C] ≤
(
q
p

)|C|
.

Summing over |C| ≥ k + 1,

P[x ∈ Cq(o), |CVp(o, x)| ≥ k + 1] ≤
(
q
p

)k+1
.

For any ε > 0 take k large enough so that
(
q
p

)k+1
< ε

2 and then r large

enough so that mk(r) <
ε
2 . So for any ε > 0 there exists r > 0 large enough

so that
sup

x 6∈B(o,r)
P[x ∈ Cq(o)] < ε.

This holds for all q < p < 1
µ . Which proves the first assertion.
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For the second assertion, let p > pu. Then by Harris’ Lemma, because there
is a unique infinite component,

Pp[o↔ x] ≥ Pp[o↔∞, x↔∞] ≥ Pp[o↔∞] · Pp[x↔∞] ≥ θ(p)2 > 0.

If p < 1
µ then taking x farther and farther away from o would make the

left-hand side go to 0, which is impossible. So it must be that p ≥ 1
µ . Thus,

pu ≥ 1
µ .

This completes the proof for site percolation.

For bond percolation the proof is similar, and is given as an exercise. ut

Exercise 13.6 Consider bond percolation on a transitive graph G. Let
CEp(x, y) be the set of open pivotal edges for x ↔ y: that is, e ∈
CEp(x, y) if e is open and x ↔ y and closing e gives a configuration
where x 6↔ y. Let

mk(r) = Pp[∃ x 6∈ B(o, r) , |CEp(o, x)| ≤ k , x↔ o].

Show that if p < 1
µ then mk(r)→ 0 as r →∞, for any fixed k.

Prove that pu ≥ 1
µ . � � �

13.5 Random Walks

A simple random walk on a graph G is a sequence (Xt)t of vertices such that
P[Xt+1 = y | Xt = x] = 1{y∼x}

1
degG(x) . This is a whole area of research, but

let us mention just those properties we require.

Given a random walk on G, one may define

ρ(G) := lim sup
t→∞

(P[Xt = o | X0 = o])
1
t .

This is easily shown to exist by Fekete’s Lemma. It is also simple to show
that

ρ(G)k = lim sup
t→∞

(P[Xkt = o | X0 = o])
1
t .

It is immediate that 0 ≤ ρ(G) ≤ 1.
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Kesten’s Thesis includes the following theorem:

Theorem 13.5.1 Let G be a transitive d-regular graph. Then G is non-
amenable if and only if ρ(G) < 1. In fact,

Φ(G)2

2d2
≤ 1−

√
1− Φ(G)2

d2 ≤ 1− ρ(G) ≤ Φ(G)

d
.

We may thus use Kesten’s Thesis to connect amenability and random walks.
For our purposes, note that if (Xt)t is a random walk on G, then

P[Xt = o | X0 = o] ≥
∑

γ∈SAPt
P[(X0, . . . , Xt) = γ] = |SAPt| · (degG)−t.

Thus, ν(G) ≤ degG ·ρ(G).

Now, if ρ(G) ≤ 1
2 then by Kesten’s Thesis, Φ(G) ≥ degG

2 ≥ degG ·ρ(G) ≥
ν(G). So

pc(G) ≤ 1

1 + Φ(G)
<

1

ν(G)
≤ pu(G).

So to prove the Pak-Smirnova-Nagnibeda Theorem it suffices to show that
G admits a Cayley graph with ρ(G) ≤ 1

2 .

If we take G(k) to be the graph G with an edge x ∼ y for any path γ : x→ y
such that |γ| = k. Then the random walk on G(k) has the same distribution
as (Xkt)t, so ρ(G(k)) = ρ(G)k. If k is large enough so that ρ(G)k ≤ 1

2 (which

is possible whenever G is non-amenable and ρ < 1) then in G(k) we have
pbondc < pu.

It is also quite simple to see that if G = 〈S〉 for finite S = S−1 then G(k) for
odd k is a Cayley graph ofG with respect to the multi-set {s1s2 · · · sk : sj ∈ S},
and that this multi-set generates G when k is odd.



Chapter 14

Percolation on Finite Graphs

14.1 Galton-Watson Processes Conditioned on Extinction

Let X be a random variable with values in N. We assume that P[X =
0] + P[X = 1] < 1. Recall that the Galton-Watson Process with offspring
distribution X, GWX , is the process (Zn)n such that Z0 = 0 and Zn+1|Zn
is the sum of Zn independent copies of X.

We have already seen that if q = q(X) is the extinction probability for GWX ,
then q is the smallest solution in (0, 1] to the equation q = E[qX ], and q = 1
if and only if E[X] ≤ 1.

For such a random variable X, let us define X∗ to be the random variable
with values in N and density given by

P[X∗ = x] = P[X = x]qx−1.

One may check that indeed∑
x

P[X∗ = x] = E[qX−1] = 1.

Lemma 14.1.1 Let (Zn)n be GWX for some X with E[X] > 1. Let
q = q(X) be the extinction probability. Let E be the event of extinction
(i.e. E = {∃ n : Zn = 0} and q = P[E]). Then, conditioned on E, the

128
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process (Zn)n has the same distribution as GWX∗ .

Proof. Let (Zn)n be GWX and let (Z∗n)n be GWX∗ . We have to show that
for every sequence (1 = z0, z1, . . . , zt),

P[Z[0, t] = z[0, t] | E] = P[Z∗[0, t]], (14.1)

where Z[s, t] = (Zs, . . . , Zt), Z
∗[s, t] = (Z∗s , . . . , Z

∗
t ) and z[s, t] = (zs, . . . , zt).

Using Bayes and the Markovian property of the Galton-Watson process,

P[Z[0, t] = z[0, t] | E] =
P[E | Z[0, t] = z[0, t]] · P[Z[0, t] = z[0, t]]

P[E]
= P[Z[0, t] = z[0, t]]qzt−1.

We now prove (14.1) by induction on t. For t = 0 this is obvious, since
Z0 = Z∗0 = 1.

For t > 0, for any (z0, . . . , zt−1, zt), using x = zt−1, y = zt, by induction,

P[Z[0, t] = z[0, t] | E] = P[Z[0, t] = z[0, t]]qy−1

= qy−1 · P[Z[0, t− 1] = z[0, t− 1]] · P[Zt = y | Zt−1 = x]

= qy−1 · q1−x P[Z[0, t− 1] = z[0, t− 1] | E] · P[Zt = y | Zt−1 = x]

= qy−x · P[Z∗[0, t− 1] = z[0, t− 1]] · P[Zt = y | Zt−1 = x].

Since

P[Z∗[0, t] = z[0, t]] = P[Z∗[0, t− 1] = z[0, t− 1]] · P[Z∗t = y | Z∗t−1 = x],

it suffices to prove that for any x, y and any t > 0,

qy−x · P[Zt = y | Zt−1 = x] = P[Z∗t = y | Z∗t−1 = x]. (14.2)

On Zt−1 = x, Zt is the sum of x independent copies of X. On Z∗t−1 = x, Z∗t
is the sum of x independent copies of X∗. Let (Xj)j be i.i.d. copies of X
and (X∗j )j i.i.d. copies of X∗.

We prove (14.2) by induction on x. For x = 0 it is clear that (14.2) holds.

For x = 1,

qy−x P[Zt = y | Zt−1 = x] = qy−1 P[X1 = y] = P[X∗ = y] = P[X∗1 = y].
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For x > 1, let Y =
∑x

j=2Xj and Y ∗ =
∑x

j=2X
∗
j . By induction, for any

k ≤ y,

P[Y = k] = P[Zt = k | Zt−1 = x− 1] = qx−1−k P[Z∗t = k | Z∗t−1 = x− 1] = qx−1−k P[Y ∗ = k],

so

P[Zt = y | Zt−1 = x] = P[X1 + Y = y] =

y∑
k=0

P[X1 = y − k] · P[Y = k]

=

y∑
k=0

q1+k−y P[X∗1 = y − k] · qx−1−k P[Y ∗ = k]

= qx−y P[X∗1 + Y ∗ = y] = qx−y P[Z∗t = y | Z∗t−1 = x].

ut

Example 14.1.2 Recall that if f(s) = E[sX ] then f is convex, so has an
increasing derivative on (0, 1). Also, for X∗ as above,

E[sX
∗
] =

∑
x

P[X = x]qx−1sx = q−1f(sq).

So

E[X∗] =
∂

∂s
q−1f(sq)

∣∣∣
s=1

= f ′(q).

Note that since f ′ is strictly increasing on (0, 1), it must be that f ′(q) < f ′(s)
for all s > q. The function f(s) − s obtains minimum on [q, 1] at some
s ∈ (q, 1) such that f ′(s) = 1 (because f(q) − q = 0 = f(1) − 1 and f is
strictly convex on (q, 1)). Thus, f ′(q) < f ′(s) = 1. 454

Example 14.1.3 Let us consider the Poisson case.

If X ∼ Poi(λ) then

E[sX ] =

∞∑
k=0

e−λ
skλk

k!
= e−λ(1−s).

So q = q(X) is the solution to e−λ(1−q) = q or equivalently, qe−λq = e−λ.

Note that the function x 7→ xe−x has a maximum at x = 1 and increases in
(0, 1) and decreases in (1,∞). Thus, for every λ > 1 we may define λ∗ as
the unique λ∗ < 1 such that λ∗e−λ

∗
= λe−λ.
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If E[X] > 1 and X ∼ Poi(λ) then

P[X∗ = x] = e−λ
λx

x!
· qx−1 = e−λq

(λq)x

x!
,

so X∗ ∼ Poi(qλ). Note that qλe−qλ = λe−λ so qλ = λ∗ and X∗ ∼ Poi(λ∗).
454

Example 14.1.4 How about the Binomial case?

If X ∼ Bin(n, p), then

E[sX ] =
n∑
k=0

(
n

k

)
pk(1− p)n−ksk = (1− p+ sp)n = (1− p(1− s))n.

So q = (1− p(1− q))n.

As for X∗,

P[X∗ = x] =

(
n

k

)
pk(1− p)n−kqk−1 =

(
n

k

)(
pq

1−p(1−q)

)k
·
(

1−p
1−p(1−q)

)n−k
,

so X∗ ∼ Bin(n, pq
1−p(1−q)).

Note that if p = 1+ε
n then (1− p(1− s))n is very close to e−(1+ε)(1−s) when

n is very large. So q is close to the solution of e−(1+ε)(1−s) = s, as in the
Poisson-(1 + ε) case.

This case is interesting, because as we have seen, p-bond percolation on the
rooted d-regular tree is a Galton-Watson process with offspring distribution
X ∼ Bin(d − 1, p), in the sense that the component of the root is exactly
those vertices in such a process.

We used this to deduce that pc = 1
d−1 and that θ(pc) = 0. We will also use

this point of view to calculate the distribution of the component size.

454

14.2 Exploration of a Galton-Watson Tree

Suppose we consider a Galton-Watson tree with offspring distribution X.
Here is another way to sample the tree, but with a time change.
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Instead of generating the tree one generation every time step, we will gen-
erate it by letting every active particle reproduce at different time steps.

Let X1, X2, . . . , be independent copies of X. Start with Y0 = 1. Here Yt
denotes the number of “active” particles (that is those that have not yet
reproduced).

At every time step t > 0, if Yt−1 > 0 let Yt = Yt−1 + Xt − 1. That is, one
particle reproduces with Xt offspring and dies. If Yt−1 = 0 then set Yt = 0.

Note that as long as there is no extinction (i.e. Yt > 0) the number of
dead particles is always t. If extinction occurs, then there is a time t
for which there are no active particles, i.e. all particles are dead. If T =
inf {t : Yt = 0} then the total number of offspring is T .

Now, let T be the rooted d-regular tree rooted at o. If we were exploring the
component of o in p-bond percolation on T, then the size of this component
is the total number of offspring in a Galton-Watson process with offspring
distribution X ∼ Bin(d− 1, p), which has the distribution of T above. This
point of view gives us a simple way of computing the size distribution of the
component of o.

Proposition 14.2.1 For X ∼ Bin(d−1, p) and (Yt)t as above we have that
if Yt−1 > 0 then Yt ∼ Bin(t(d− 1), p)− (t− 1) and Yt ∈ σ(X1, . . . , Xt).

Proof. By induction on t. For t = 1 this is clear from Y1 = X1.

For the induction step: if Yt > 0 then Yt+1 = Yt +Xt+1 − 1. By induction,
since it must be that Yt−1 > 0 (otherwise Yt = 0) we have Yt ∼ Bin(t(d −
1), p)−(t−1) and is measurable with respect to σ(X1, . . . , Xt). Since Xt+1 is
independent of σ(X1, . . . , Xt), and since the sum of independent binomials
is also binomial, we have Yt+1 ∼ Bin(t(d− 1) + (d− 1), p)− t, which is the
proposition. ut

Another result we require is a large deviations result for binomial random
variables.

Proposition 14.2.2 Let B ∼ Bin(n, p) then for any 0 < ε < 1,

max {P[B ≥ (1 + ε)np],P[B ≤ (1− ε)np]} ≤ exp
(
−1

4ε
2np
)
.
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Proof. We start by calculating the exponential moment of B.

E[eαB] =
n∑
k=0

(
n

k

)
pk(1− p)n−keαk = (1− p(1− eα))n.

Thus, for 0 < α ≤ 1
2 , by Markov’s inequality,

P[B ≥ (1 + ε)np] = P[eαB ≥ eα(1+ε)np] ≤ (1 + p(eα − 1))ne−α(1+ε)np

≤ exp
(
np(α+ α2 − α(1 + ε))

)
,

where we have used the inequalities 1 + ξ ≤ eξ and eξ ≤ 1 + ξ + ξ2 which is
valid for all ξ ≤ 1

2 . Optimizing over α we choose α = ε
2 to obtain α2− εα =

− ε2

4 and
P[B > (1 + ε)np] ≤ exp

(
−1

4ε
2np
)
.

For the other direction we use negative exponents, so that for α > 0

P[B ≤ (1− ε)np] = P[e−αB ≥ e−α(1−ε)np] ≤ (1− p(1− e−α))neα(1−ε)np

≤ exp
(
−np(α− α2 − α(1− ε))

)
,

using the same inequalities as before (here −α < 0 so there is no restriction).

A similar optimization gives α = ε
2 , so εα− α2 = ε2

4 and

P[B ≤ (1− ε)np] ≤ exp
(
−1

4ε
2np
)
.

ut

Proposition 14.2.3 For p-bond percolation on T and C = C(o):

• If p < 1
d−1 then

Pp[|C| > t] ≤ e−αt

for α = (1−(d−1)p)2

(d−1)p .

• If p > 1
d−1 then Pp[|C| =∞] ≥ 1− q, where q = q(Bin(d−1, p)) and

Pp[t < |C| <∞] ≤ e−βt

where β = (1−µ)2

µ and µ = E[X∗] = (d− 1) pq
1−p(1−q) .
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Proof. We begin with the sub-critical case, p < 1
d−1 .

We consider the Galton-Watson process (Yt)t described above with offspring
distribution X ∼ Bin(d− 1, p), and T = inf {t : Yt = 0} so that |C| and T
have the same distribution.

Now,

P[T > t] ≤ P[Yt > 0] = P[Bin(t(d− 1), p) > t].

Since p < 1
d−1 , taking ε = t−t(d−1)p

t(d−1)p = 1−(d−1)p
(d−1)p > 0 we obtain by large

deviations of binomials that

P[T > t] = P[Bin(t(d− 1), p) > t(d− 1)p(1 + ε)] ≤ exp
(
−ε2t(d− 1)p

)
= exp

(
− (1−(d−1)p)2

(d−1)p · t
)
.

If p > 1
d−1 then the Galton-Watson process is super critical and q is just

the extinction probability, so P[T = ∞] ≥ 1 − q. Also, if E is the event of
extinction,

P[t < T <∞] = P[t < T <∞ | E] · q ≤ P[t < T <∞ | E].

Now conditioned on E we have a Galton-Watson process with offspring

distribution X∗ ∼ Bin(d − 1, p∗), where p∗ = pq
1−p(1−q) = pq1− 1

d−1 . The

important thing here is that the expectation is µ = (d − 1)p∗ < 1. So we
can use the previous result on sub-critical processes so that

P[t < T <∞] ≤ exp
(
− (1−µ)2

µ · t
)
.

ut

14.3 The Erdös-Rényi Random Graph

Definition 14.3.1 For a positive integer n and parameter p ∈ [0, 1] we de-
fineG(n, p) to be the random graph on vertex set V (G(n, p)) = {1, 2, . . . , n}
whose edge set is given by letting x ∼ y with probability p independently
for all x 6= y ∈ V (G(n, p)).

That is, G(n, p) is just the random subgraph of the complete graph on
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{1, . . . , n}, obtained by p-bond percolation.

Paul Erdös (1913–1996)

Alfréd Rényi (1921–1970)

This model was introduced by Erdös and Rényi in 1960. It is the ana-
logue of bond percolation in the finite setting. There are many interesting
phenomena regarding the Erdös-Rényi model, let us elaborate on one:

For the random graph G(n, p) let C1 ≥ C2 ≥ . . . ≥ CN denote the sizes of
the connected components in G(n, p) in non-increasing order (so N is the
number of connected components in G(n, p)).

Theorem 14.3.2 For any ε > 0 there exist constants c, C > 0 such that
the following holds.

• If p(n) = 1−ε
n then as n→∞,

Pn,p(n)[C1 ≤ C log n]→ 1.

• If p(n) = 1+ε
n then as n→∞,

Pn,p(n)[C1 ≥ cn , ∀ j ≥ 2 , Cj ≤ C log n]→ 1.

That is, with high probability, in the super-critical phase, p > 1
n , the largest

component is of linear size, but all other components are at most logarith-
mic in size. In the sub-critical phase, p < 1

n , all components are at most
logarithmic in size.

14.4 Sub-Critical Erdös-Rényi

Let us define an exploration of the component of 1 in G(n, p). In this process,
all vertices are either live (Lt), dead (Dt) or neutral (Nt).

We start with L0 = {1} , D0 = ∅, N0 = {2, . . . , n}. At step t > 0, we
choose some live vertex, say x ∈ Lt−1. We add x to the dead vertices,
Dt = Dt−1 ∪ {x}. We then consider all y ∈ Nt−1 and let y ∈ Lt if x ∼ y is
open, and y ∈ Nt if x ∼ y is closed. That is, let

Lt = Lt−1 \ {x}
⋃
{y ∈ Nt−1 : x ∼ y ∈ G(n, p)}
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and
Nt = {y ∈ Nt−1 : x ∼ y 6∈ G(n, p)} .

If Lt = ∅ the process terminates.

Now, if Yt := |Lt| then since no edge is examined more than once, we have
that Yt = Yt−1 − 1 + Bin(Nt−1, p). Since |Dt| = t and |Nt| = n − |Dt| −
|Lt| = n − t − Yt by construction, we have that Yt = Yt−1 + Zt − 1 where
Zt ∼ Bin(n− t+ 1− Yt−1, p) are all independent.

Note that the size of the component of 1 is T := inf {t : Yt = 0}. Moreover,
given (Lt, Dt, Nt)t≤T all the edges x ∼ y with x, y 6∈ C(1) are independent, so
the remaining subgraph on {1, 2, . . . , n} \ C(1) is independently distributed
as G(n− |C(1)|, p).

Lemma 14.4.1 There exists a coupling of (Lt, Dt, Nt)t above with a
Galton-Watson process (Ỹt)t of offspring distribution Bin(n, p) such that
Yt = |Lt| ≤ Ỹt for all t.

Specifically, for any ε > 0, if p(n) ≤ 1−ε
n then as n→∞,

Pn,p(n)[C1 >
1
ε2

log n]→ 0.

Proof. If we write Nt = {y1 < y2 < · · · < yk} for k = n − t − Yt, we can
define

Xt+1 := Yt+1−Yt+1+Bin(n−k, p) =
k∑
j=1

1{x∼yj is open }+Bin(n−k, p) ∼ Bin(n, p),

conditional on (Ls, Ds, Ns)s≤t. So inductively, if (Ỹt)t is the Galton-Watson
process Ỹt = Ỹt−1 +Xt − 1, since Ỹt − Ỹt−1 = Xt − 1 ≥ Yt − Yt−1, we obtain
that Yt ≤ Ỹt for all t.

Moreover, if T > t then Yt > 0 and so Ỹt > 0 and T̃ > t. Hence T ≤ T̃ .

We get that if np < 1 then

P[T̃ > k] ≤ e−αk,

where α = (1−np)2

np . If p(n) ≤ 1−ε
n then α ≥ γ := ε2

1−ε . Since all vertices in
G(n, p) have the same distribution

Pn,p(n)[C1 > k] ≤
∑
x

Pn,p(n)[|C(x)| > k] ≤ ne−γk.



14.5. SUPER-CRITICAL ERDÖS-RÉNYI 137

If γk ≥ (1+ε) log n this tends to 0, so with high probability, C1 ≤ 1−ε2
ε2

log n ≤
1
ε2

log n. ut

14.5 Super-Critical Erdös-Rényi

Lemma 14.5.1 For every δ > 0 the following holds. P[|C(1)| ≥ δn] ≥
1− q(X), where X ∼ Bin(b(1− δ)nc, p)

Proof. Let m = b(1 − δ)nc. Let T ′ = inf {t : Nt ≤ m}. As long as
t < T ′, we have that Nt > m and so there are at least m possible y ∈
Nt to consider for the live x chosen from Lt. Thus, if we write Nt =
{y1 < y2 < · · · < ym < ym+1 < · · · yk} with k = |Nt| = n − t − Yt, we can
define

Xt+1 :=
m∑
j=1

1{x∼yj is open } ∼ Bin(m, p),

conditional on (Ls, Ds, Ns)s≤t. Also by construction, Xt+1 ≤ Zt+1 = Yt+1−
Yt + 1.

Thus the Galton-Watson process defined by Y ∗t = Y ∗t−1 +Xt− 1 inductively
satisfies Y ∗t ≤ Yt for all t < T ′.

Hence, if Yt = 0 then either Y ∗t = 0 or T ′ ≤ t. So for T ∗ = inf {t : Y ∗t = 0}
we have that either T ′ ≤ T or T ∗ ≤ T . Specifically, T ′ ∧ T ∗ ≤ T .

Note that at time T ′, we have that NT ′ ≤ m so DT ′ + YT ′ = n − NT ′ ≥
n−m ≥ δn. Since if T ′ ≤ T we have |C(1)| ≥ DT ′ + YT ′ , we get that in any
case |C(1)| ≥ min {δn, T ∗}.

Now, T ∗ is the size of a Galton-Watson tree of offspring distribution X ∼
Bin(m, p), so

P[T ≥ δn] ≥ P[T ∗ > δn] ≥ P[T ∗ =∞] ≥ 1− q(X).

ut

Let us examine the process (Yt)t more closely, in order to determine the
distribution of the component size |C(1)| = T = inf{t : Yt = 0}.
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Lemma 14.5.2 Consider Yt = Yt−1+Zt−1 for Zt ∼ Bin(n−t+1−Yt−1, p)
are independent. Let this be defined for all t ≤ n− 1.

Then, for all 0 ≤ t ≤ n− 1,

|Nt| ∼ Bin(n− 1, (1− p)t).

Consequently,

Yt ∼ Bin(n− 1, 1− (1− p)t)− t+ 1.

Proof. Given |Nt| = k we have that there are k neutral vertices to compare
with our chosen live vertex, and each gets put into Nt+1 with independent
probability (1− p). Thus,

|Nt+1|
∣∣∣ |Nt| = k ∼ Bin(k, 1− p).

It is now simple to verify that by induction, since |N0| = n−1 ∼ Bin(n−1, 1),
we have that

|Nt| ∼ Bin(|Nt−1|, 1− p) ∼ Bin(n− 1, (1− p)t)

(see Exercise 14.1).

Now, Yt + t − 1 = n − |Nt| − |Dt| + t − 1 = n − 1 − |Nt|. Thus, for all
0 ≤ k ≤ n− 1,

P[Yt+t−1 = k] = P[|Nt| = n−1−k] =

(
n− 1

k

)
(1−p)t(n−1−k)(1−(1−p)t)k.

ut

Exercise 14.1 Show that if B ∼ Bin(n, p) and X | B = k ∼ Bin(k, q)
then X ∼ Bin(n, pq). � � �

We now carefully examine (Yt)t.

Lemma 14.5.3 For any ε, δ > 0, there is n0 such that for all n > n0, if
p(n) = 1+ε

n , k(n) ≥ 32
ε2

log n, and q = q(Poi(1 + ε),

Pn,p(n)[k(n) ≤ T < (1− q)n or T > (1 + δ)(1− q)n] ≤ n−4.
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Proof. Fix ε > 0 small enough so that ε < q(1 + ε) where q = q(Poi(1 + ε))
is the extinction probability for Galton-Watson with Poi(1 + ε) offspring.
This is possible since as ε→ 0, q → 1.

Assume that p = p(n) such that pn = 1 + ε.

We will make use of the inequalities e−ξ ≤ 1 − ξ
ξ+1 for any 0 ≤ ξ ≤ 1, and

1− ξ ≤ e−ξ for any ξ. So with p = ξ
ξ+1 ⇐⇒ ξ = p

1−p , (as long as n is large
enough ξ ≤ 1) we have

1− exp(−pt) ≤ 1− (1− p)t ≤ 1− exp(− pt
1−p).

Let t = αn for α > 0 such that αn ∈ N.

Then, when α < 1− e−α(1+ε) we have that for 1− δ := α
1−e−α(1+ε) ,

P[Yt ≤ 0] = P[Bin(n− 1, 1− (1− p)t) ≤ t− 1] ≤ P[Bin(n− 1, 1− e−α(1+ε)) ≤ α(n− 1)]

≤ exp
(
−1

4δ
2(n− 1)(1− e−α(1+ε))

)
≤ exp

(
− (1−e−α(1+ε)−α)2

4α(1+ε) (n− 1)
)
.

Now, if α(1 + ε) ≤ 1 then

e−α(1+ε) ≤ 1− α− εα+ α2(1 + ε)2,

so

(1− e−α(1+ε) − α)2 ≥ (εα+ α2(1 + ε)2)2 = α2 · (ε+ α(1 + ε)2)2 ≥ α2 · ε2.

Now, the only solution in (0, 1) to 1 − q = 1 − e−(1+ε)(1−q) is exactly
q = q(Poi(1 + ε)), the extinction probability of a Galton-Watson process
of offspring distribution Poi(1 + ε). So α < 1 − e−α(1+ε) if and only if
α < 1− q.

Thus, we conclude that for all t such that 0 < t < n(1− q), since t(1 + ε) =
n · α(1 + ε) < n · (1− q)(1 + ε) ≤ n,

P[Yt = 0] ≤ exp
(
− ε2

4(1+ε) t
)
.

Taking k < t = bn(1− q)c,

P[k ≤ T < t] = P[∃ k ≤ m < t : Ym = 0] ≤
t∑

m=k

P[Ym = 0] ≤ n · exp
(
− ε2

4(1+ε) · k
)
.
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Since 1− q = 1− e−(1+ε)(1−q), for any δ > 0 we may choose ε′ > 0 such that
if α = (1− q)(1 + δ) then α = (1 + ε′)(1− e−(1+ε+ε′)α). Let n0 = n0(ε′) be
large enough so that for all n > n0, we have p

1−p ≤ 1 + ε+ ε′. So

1− (1− p)t ≤ 1− exp(− pt
1−p) ≤ 1− e−t(1+ε+ε′)/n.

For t ≥ αn we then have

P[Yt > 0] = P[Bin(n− 1, 1− (1− p)t) > t− 1] ≤ P[Bin(n, 1− e−α(1+ε+ε′)) ≥ αn]

≤ exp
(
− ε′2

4(1+ε′)αn
)
.

Thus, for any δ > 0 there exist ε′ > 0 and n0 = n0(δ) > 0 so that for all
n > n0,

Pn,p(n)[T > d(1 + δ)(1− q)ne] ≤ exp
(
− ε′2

4(1+ε′)(1 + δ)(1− q)n
)
.

Combined with the previous bound, we have that for any ε, δ > 0, there is
n0 such that for all n > n0, with k ≥ 32

ε2
log n,

Pn,p(n)[k ≤ T < (1− q)n or T > (1 + δ)(1− q)n] ≤ n−4.

ut

We now turn to finally prove Theorem 14.3.2.

Proof of Theorem 14.3.2. Fix ε, δ > 0, choose n large enough, and p =
p(n) = 1+ε

n .

Consider the following procedure to explore the components ofG(n, p). Start
with G0 = G(n, p), m0 = n, C0 = ∅. Given Gj ,mj , Cj for j ≤ t define
Gt+1 = G(n, p)\(C1∪C2∪· · ·∪Ct) and mt+1 = |Gt+1| = n−|C1|−· · ·−|Ct| =
mt−|Ct|. Inductively Gt+1 will have the distribution of G(mt+1, p). Choose
any vertex of Gt+1 and explore the component in Gt+1 of that vertex. Let
Ct+1 be that component. Continue inductively.

Let q = q(Poi(1+ε). Let q′ = q(Bin(b1− ε
2c, p)) (note that (1− ε

2)(1+ε) > 1).

Let k = d32
ε2

log ne. Let r be an integer so that (q′)r < n−4. So r = O( logn
− log q′ ).

Choose n large enough so that rkp << 1− q(1 + ε).
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For all j, let Sj be the event that |Cj | < k (‘S’ is for small). Let Lj be the
event that (1− q)mj ≤ |Cj | ≤ (1 + δ)(1− q)mj (large). Let Bj be the event
that Scj ∩ Lcj (bad).

Lemma 14.5.1 tells us that for t ≤ r,

P[St
∣∣ S1, . . . , St−1] ≤ q′,

because k << ε(n − rk) and on the event S1, . . . , St−1, we have that mt ≥
n− tk ≥ n− rk.

Also, Lemma 14.5.3 tells us that

P[Bt
∣∣ Gj , Cj , j = 1, . . . , t− 1] ≤ (mt)

−4.

If t ≤ r and S1, . . . , St−1 then mt ≥ n− rk so

P[Bt
∣∣ S1, . . . , St−1] ≤ (n− rk)−4.

Note that we have that either S1, . . . , Sr or there exists t ≤ r with S1, . . . , St−1, Bt,
or there exists t ≤ r with S1, . . . , St−1, Lt. So

P[∃ t ≤ r : S1, . . . , St−1, Lt] ≥ 1− P[S1, . . . , Sr]− P[∃ t ≤ r : S1, . . . , St−1, Bt]

≥ 1− (q′)r − r(n− rk)−4.

Since for t ≤ r, S1, . . . , St−1 implies that mt > n− rk, we get that with high
probability there exists t ≤ r such that mt > n− rk and |Ct| ≥ (1− q)mt ≥
(1− q)(n− rk). So mt+1 ≤ qn+ (1− q)rk. and mt+1p ≤ q(1 + ε) + rkp <<
1. This implies that Gt+1 is sub critical, and has only logarithmic size
components, with high probability. ut
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