ENEE620-23. Home assignment 5. Date due December 5, 11:59pm EDT.
Instructor: A. Barg

Please submit your work as a single PDF file to ELMS (under the "Assignments" tab)

- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points.

Problem 1. An $N \times N$ checkers board is covered with checkers pieces of k different colors, meaning that one piece is placed on each square. Now, in the regular checkers game the pieces are of two colors, but in this problem they can have $k \geq 2$ different colors. Let X_{0} be the starting coloring (allocation of colors to the pieces). The random process of color evolution proceeds as follows: choose a random piece (with uniform distribution), choose uniformly its neighbor, and replace the chosen piece with a piece with the color of the chosen neighbor.
(a) Fix a color 0 and let Y_{n} be the proportion of 0 -colored pieces at time n. Prove that $\left(Y_{n}\right)_{n}$ forms a martingale with respect to $\left(\mathcal{F}_{n}\right)_{n}$, where $\mathcal{F}_{n}=\sigma\left(X_{0}, X_{1}, \ldots X_{n}\right)$.
(b) Does this martingale converge a.s. (with justification)? If yes, what is the limit random variable Y_{∞} ? Give a complete description of the distribution of the $\mathrm{RV} Y_{\infty}$.

Problem 2. Consider a "lazy" random walk on \mathbb{Z} with $S_{0}=0$, evolving as follows: $S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1$ where $P\left(X_{i}=-1\right)=1 / 2, P\left(X_{i}=0\right)=1 / 4$ and $P\left(X_{i}=1\right)=1 / 4$. Define the stopping time $\tau=\min (n$: $S_{n}=-a$ or b, where a, b are positive integers.
(a) Show that τ is finite a.s.
(b) Find $E \tau$.
(c) Find $P\left(S_{\tau}=b\right)$.

Problem 3. Let $\left(A_{i}\right)$ be a sequence of independent events such that $f(n):=\sum_{i=1}^{n} P\left(A_{i}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Let $\tau_{k}=\min \left(n: \sum_{i=1}^{n} \mathbb{1}_{A_{i}}=k\right)$.
(a) Show that $\tau_{k}<\infty$ a.s.
(b) Show that $E\left(f\left(\tau_{k}\right)\right)=k$ for all $k \geq 1$ (Hint: use OST).

Problem 4.
(a) Give an example of Gaussian random variables X and Y that are uncorrelated (i.e., $\operatorname{Cov}(X, Y)=0)$ but not independent.
(b) Let $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ be two independent Gaussian RVs. Show that $X-Y$ and $X+Y$ are independent Gaussian RVs and find their means and variances.
(c) Let (X, Y) be jointly Gaussian RVs with means μ_{1}, μ_{2}, variances $\sigma_{1}^{2}, \sigma_{2}^{2}$, and correlation coefficient ρ. Show that the conditional distribution of X given $Y=y$ is Gaussian, and that $E(X \mid Y)=\mu_{1}+\rho \sigma_{1}\left(Y-\mu_{2}\right) / \sigma_{2}$ and the variance $\operatorname{Var}(X \mid Y)=\sigma_{1}^{2}\left(1-\rho^{2}\right)$.

Problem 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. Bernoulli RVs with $P(X=1)=p, P(X=0)=q$, where $p+q=1$ and $p \neq q, p>0, q>0$. Further, define $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ and

$$
M_{n}=a_{n} p^{S_{n}} q^{n-S_{n}}, n \geq 1
$$

(a) Find a_{n} such that $\left(M_{n}\right)_{n \geq 1}$ forms a martingale with respect to the filtration generated by $\left(X_{n}\right)_{n \geq 1}$.
(b) Prove that the sequence $\left(M_{n}\right)$ converges to an a.s. limit and determine the limit.

