ENEE620-23. Home assignment 2. Date due September 30, 11:59pm EDT.
Instructor: A. Barg
Please submit your work as a single PDF file to ELMS (under the "Assignments" tab)

- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points.

Problem 1. Let $\left(X_{n}\right)_{n}$ be a sequence of independent RVs such that $X_{1}=0$, and for $n \geq 2$,

$$
P\left(X_{n}=n\right)=P\left(X_{n}=-n\right)=f(n) ; P\left(X_{n}=0\right)=1-2 f(n),
$$

where $f(n), 0<f(n)<1$ is some non-constant function of n (such as $f(n)=\frac{1}{n}$ or similar). Further, let $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the empirical mean of the sequence.
(a) Give an example of $f(n)$ such that $S_{n} \xrightarrow{p} 0$ (converges to 0 in probability).
(b) Give an example of $f(n)$ such that S_{n} converges almost surely.
(c) Give an example of $f(n)$ such that S_{n} converges in probability and does not converge almost surely.

Problem 2. In our discussion of the monotone convergence theorem we proved that under some assumptions on RVs $\left(X_{n}\right)_{n}$, it is true that $E \sum_{n=1}^{\infty} X_{n}=\sum_{n=1}^{\infty} E X_{n}$. Give an example of an infinite sequence of RVs $\left(X_{n}\right)_{n}$ for which this equality fails to hold (obviously, they do not satisfy the mentioned assumptions).

Problem 3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed (i.i.d.) RVs such that $E\left[X_{1}^{-1}\right]$ exists, and let $S_{m}=X_{1}+\cdots+X_{m}$. Prove that if $m \leq n$, then $E\left[\frac{S_{m}}{S_{n}}\right]=\frac{m}{n}$.

Problem 4. Let X_{1}, X_{2}, X_{3} be i.i.d. RVs with pdf $f(x)=e^{-x}$ for $x \geq 0$ and $f(x)=0$ o/w, i.e., $X_{i} \sim \operatorname{Exp}(1)$ for all $i=1,2,3$. Show that the RVs

$$
Y_{1}=\frac{X_{1}}{X_{1}+X_{2}}, Y_{2}=\frac{X_{1}+X_{2}}{X_{1}+X_{2}+X_{3}}, \text { and } Y_{3}=X_{1}+X_{2}+X_{3}
$$

are independent.

Problem 5. Let $\Omega=\mathbb{R}$ and $\mathcal{B}(\mathbb{R})$ be the Borel σ-algebra. Fix a number $x \in \mathbb{R}$ and for all $A \in \mathcal{B}(\mathbb{R})$, define

$$
\delta_{x}(A)=\left\{\begin{array}{l}
1 \text { if } x \in A \\
0 \text { if } x \notin A
\end{array} .\right.
$$

(a) Show that δ_{x} is a measure, and that $\left(\Omega, \mathcal{B}(\Omega), \delta_{x}\right)$ is a probability space. This measure is in fact called the delta function at x (an impulse, as an engineer would say).
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative measurable function. Show that $\int_{\mathbb{R}} f d \delta_{x}=f(x)$.
(c) For $A \in \mathcal{B}(\mathbb{R})$ define $\mu(A)=\sum_{n=1}^{\infty} \delta_{n}(A)$ to be the couning measure (a.k.a. an impulse train). $\mu(A)$ is simply the number of natural numbers in A, which can of course be finite or infinite. For a nonnegative measurable function f show that $\int_{\mathbb{R}} f d \mu=\sum_{n=1}^{\infty} f(n)$. This shows that a sum is simply an integral against a counting measure.

Problem 6. (a) Given a CDF F, we denote $F(x-):=\lim _{y \uparrow x} F(y)$ and similarly for $F(x+)$. From the definition of F we know that $F(x)=F(x+)$ for all $x \in \mathbb{R}$. If $F(x-) \neq F(x)$, then $F(x)$ has a discontinuity at x. Your task is to show that the number of points at which $F(x)$ has a discontinuity is at most countably infinite. One option is to use the relation $\{x: F(x) \neq F(x-)\}=\cup_{n=1}^{\infty}\{x$: $\left.F(x)-F(x-)\} \geq \frac{1}{n}\right\}$.
(b) Given a CDF F and a number $a \geq 0$, show that

$$
\int_{-\infty}^{\infty}(F(x+a)-F(x)) d x=a .
$$

