ENEE620-23. Home assignment 1. Date due September 18, 11:59pm EDT.
Instructor: A. Barg
Please submit your work as a single PDF file to ELMS (under the "Assignments" tab)

- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points.

Problem 1. Let $\Omega$ be the set of all infinite sequences of tosses of a fair coin, let $A_{n}$ denote the event that the $n$th toss is 1 .
(a) Consider the event $E=\left(\limsup _{n} A_{n}\right) \cap\left(\liminf _{n} A_{n}\right)$. Is it empty? If yes, give a proof; if no, give an example of $\omega$ that is contained in $E$, with a justification.
(b) What is the probability $P\left(A_{2 n}\right.$ i.o. $)$ ?
(c) Consider the event $D$ formed of all the sequences $\omega$ with all odd entries equal to 1 . What is the probability of $D$ ?

Problem 2. Let $\Omega$ be as in Problem 1, and let $\mathcal{F}_{n}$ be a collection of subsets of $\Omega$ that depend only on the result of the first $n$ tosses. In other words, $A \in \mathcal{F}_{n}$ if and only if there is a subset $A^{(n)} \subset\{0,1\}^{n}$ such that $A=\left\{\omega \in \Omega \mid\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right) \in A^{(n)}\right\}$. For instance, $A$ is the set of $\omega$ 's with exactly 3 ones among the first 10 tosses, etc.
(a) Prove that $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$ for all $n$.
(b) Prove that the set $\mathcal{F}_{0}:=\cup_{i \in \mathbb{N}} \mathcal{F}_{i}$ is an algebra.
(c) Prove that $\mathcal{F}_{0}$ is not a $\sigma$-algebra.
(d) Consider the event

$$
T:=\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \omega_{i}}{n}=\frac{1}{2}\right\} .
$$

Is $T$ contained in $\mathcal{F}_{0}$ ?
Problem 3. Let $\Omega$ be an arbitrary set.
(a) Is the collection $\mathcal{F}_{1}$ consisting of all finite subsets of $\Omega$ an algebra?
(b) Let $\mathcal{F}_{2}$ consist of all finite subsets of $\Omega$ and all subsets of $\Omega$ having a finite complement. Is $\mathcal{F}_{2}$ an algebra?
(c) Is $\mathcal{F}_{2}$ a $\sigma$-algebra?
(d) Let $\mathcal{F}_{3}$ consist of all countable subsets of $\Omega$ and all subsets of $\Omega$ having a countable complement. Is $\mathcal{F}_{3}$ a $\sigma$-algebra?

Problem 4. Consider a sequence of independent identically distributed geometric RVs $\left(X_{n}\right)_{n}$ with probability of success $p$ and probability of failure $q=1-p$. Thus, we have $P\left(X_{n}=m\right)=p q^{m-1}$ for all $m \geq 1$ and all $n$.
(a) What is the probability $P\left(X_{n} \geq t\right)$, where $t \in \mathbb{N}$ ? What is $E X_{n}$ ?
(b) Find the largest value $a$ such that $P\left(\left\{X_{n} \geq(1-\epsilon) a \ln n\right\}\right.$ i.o. $)=1$ for all $\epsilon>0$.
(c) For the value $a$ you found in part (b), show that $P\left(\left\{X_{n} \geq(1+\epsilon) a \ln n\right\}\right.$ i.o. $)=0$ for all $\epsilon>0$.
(d) Using the results in parts (b) and (c), what is the probability of the event

$$
\left\{\omega: \limsup _{n} \frac{X_{n}}{a \ln n}=1\right\} ?
$$

(e) Is there a contradiction between (d) and the value of $E X_{n}$ ? Give a yes/no answer and a justification.

Problem 5. (a) Show that a random variable $X$ has a continuous distribution if and only if $P(X=x)=0$ for all $x \in \mathbb{R}$.
(b) Show that if $X$ and $Y$ are RVs on a probability space $(\Omega, \mathcal{F}, P)$, then the set $\{\omega: X(\omega)=$ $Y(\omega)\} \in \mathcal{F}$.
(c) Give an example of two different RVs $X$ and $Y$ whose CDFs $F_{X}$ and $F_{Y}$ coincide.

