ENEE620. Final examination, 5/18/2021.

- Please submit your work to ELMS Assignments as a single PDF file by Wednesday, 5/19/21, 10:00am EDT.
- Each problem is 10 points. Max score=50 points
- Your answers should be justified. Giving just the answer may result in no credit for the problem.
- Please pay attention to the writing. You may lose points if your paper is difficult to read.


## Problem 1.

Let $(N(t), t \geq 0)$ be a Poisson process with rate $\lambda=2$.
(a) Let $T_{k}, k=1,2, \ldots$ be the $k$ th arrival time. Find $P\left(T_{1}+T_{2}<T_{3}\right)$.
(b) Let $S \sim \operatorname{Unif}[0,1]$ be independent of $N(t)$. Find $E\left[N^{2}(S)\right]$, where $N(S)$ is the number of arrivals at a random time $S$.
(c) Define $X_{n}=N\left(n^{2}\right), n=0,1,2, \ldots$. Find the probability $P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)$ and argue whether the sequence $\left(X_{n}, n \geq 0\right)$ forms a Markov chain.

## Problem 2.

Let $\left(X_{n}\right)_{n}$ be a sequence of RVs, not assumed to be identically distributed or independent, and let $S_{n}=\sum_{i=1}^{n} X_{n}, n \geq$ 1 be the partial sums.
(a) Show that $X_{n} \xrightarrow{\text { a.s. }} 0, n \rightarrow \infty$ implies that $\frac{S_{n}}{n} \xrightarrow{\text { a.s. }} 0$;
(b) Show that $X_{n} \xrightarrow{\text { a.s. }} 0, n \rightarrow \infty$ implies that $\frac{1}{\log n} \sum_{k=1}^{n} \frac{X_{k}}{k} \xrightarrow{\text { a.s. }} 0$;
(c) Show that $X_{n} \xrightarrow{\text { a.s. }} 0, n \rightarrow \infty$ implies that $\frac{1}{\log \log n} \sum_{k=1}^{n} \frac{X_{k}}{k \log k} \xrightarrow{\text { a.s. }} 0$.
(d) Show that $X_{n} \xrightarrow{\mathrm{p}} 0, n \rightarrow \infty$ does not necessarily imply that $\frac{S_{n}}{n} \xrightarrow{\mathrm{p}} 0$ as $n \rightarrow \infty$.
(e) Now assume that $\left(X_{n}\right)$ are i.i.d. (do not assume that $X_{n} \rightarrow 0$ ). Show that as $n \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}}{X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}} \stackrel{\text { a.s. }}{\rightarrow} \frac{E X}{\operatorname{Var}(X)+(E X)^{2}}=\frac{E X}{E X^{2}} .
$$

## Problem 3.

Let $\left(Y_{n}\right)_{n}$ be a sequence of i.i.d. RVs such that $P\left(Y=\frac{1}{2}\right)=P\left(Y=\frac{3}{2}\right)=\frac{1}{2}$, and set $X_{n}=\prod_{1 \leq i \leq n} Y_{i}, n \geq 1$.
(a) Show that $\left(X_{n}\right)_{n}$ forms a martingale; find $E X$.
(b) Show that the martingale converges and identify the limit. Does it converge in $L^{1}$ ? If yes, explain which sufficient conditions you used; if not, explain which necessary conditions fail to hold.

## Problem 4.

A queueing system has 2 servers with exponential service rates $\mu_{1}$ and $\mu_{2}$. Customers enter the system at Poisson rate $\lambda$ and join a single queue. If the arriving customer finds the system empty, he chooses one of the servers randomly with probability $1 / 2$.
(a) Show that the system can be modeled by a Markov chain with states $\mathcal{S}=\{0, a, b, 2,3, \ldots\}$, where $a$ means that there is one customer at server 1 and $b$ that there is one customer at server 2 (and no other customers in the system). Prove that this Markov chain is reversible, i.e., it satisfies the detailed balance condition $\pi_{s} Q_{s t}=\pi_{t} Q_{t s}$ for all $t, s \in \mathcal{S}$.
(b) Find the limiting distribution $\pi$ of the system.

## Problem 5.

(a) Let $Y \sim \operatorname{Unif}(-1,1)$ and consider a random process $X(t)=Y^{3} t, t \geq 0$. Is the process $X(t)$ stationary?
(b) Now let $Y \sim \operatorname{Unif}(0,1)$ and consider $X(t)=e^{Y} t, t \geq 0$. Are the increments of $X(t)$ independent? Are they stationary (meaning that for any $0<t_{1}<t_{2}$ the distribution of $X\left(t_{2}+s\right)-X\left(t_{1}+s\right)$ does not depend on $\left.s\right)$ ?

