Problem 1.

(a) For \(n = 1 \), \(\varphi_{1,1}(-1) = \frac{1}{2} \); \(E X_{1,1} = 0 \); \(EX_{1,1}^{2} = 1 \); \(\text{Var} \ X_{1,1} = 1 \).

The same answer for \(n \geq 2 \):

\[\text{Ex}_{n,k} = 0; \text{Ex}_{n,k}^{2} = 1; \text{Var} \ X_{n,k} = 1 \text{ for all } k = 1, 2, \ldots, n. \]

(b) Clearly \(ES_{n} = 0 \); \(\text{Var} \ S_{n} = n \), so \(E \frac{S_{n}}{n} = 0 \). From WLLN \(\frac{S_{n}}{n} \overset{P}{\rightarrow} 0 \).

(c)

\[E e^{it \frac{S_{n}}{\sqrt{\text{Var} \ S_{n}}}} = \prod_{k=1}^{n} e^{i t \frac{X_{n,k}}{\sqrt{n}}} = \left(\frac{e^{it} + e^{-it}}{2} \right)^{n} \]

\[= \left(\cos \frac{t}{n} + 1 - \frac{1}{n} \right)^{n} = \left(1 - \frac{1 - \cos t}{n} \right)^{n} \]

\[\lim_{n \to \infty} E e^{it \frac{S_{n}}{\sqrt{\text{Var} \ S_{n}}}} = e^{-\frac{1}{2} \cos t}, \quad t \in \mathbb{R} \]

Next, recall that the characteristic function of \(\text{Poi}(\lambda) \) is

\[\varphi_{\lambda}(t) = e^{-\lambda(1 - e^{it})}, \quad t \in \mathbb{R} \]

and thus

\[e^{-2\lambda(1 - \cos t)} = \varphi_{\lambda}(t) \varphi_{\lambda}(-t) = 1 \]

This gives

\[e^{-\frac{1}{2} \cos t} = \varphi_{\frac{1}{2}}(t) \varphi_{\frac{1}{2}}(-t) \]

For any 2 RVs \(\xi, \eta \) we have \(\varphi_{\xi + \eta}(s) = \varphi_{\xi}(s) \varphi_{\eta}(-s) \).

Thus, by (1), (2) \(R_{n} \overset{d}{\to} X_{\frac{1}{2}}' - X_{\frac{1}{2}}'' \), where \(X_{\frac{1}{2}}', X_{\frac{1}{2}}'' \) are independent \(\text{Poi}(\frac{1}{2}) \) random variables.
Problem 2

\[E X_t = E \left[\xi(t)^{N(t)} \right] = E \xi E(t)^N = 0. \]

Suppose that \(s < t \), then

\[E[X_s X_t] = E \sum_{k=0}^{\infty} (-1)^k \lambda(t-s) \frac{(N(s)-N(t))^k}{k!} e^{-\lambda(t-s)} \]

Likewise if \(t < s \), \(E X_s X_t = e^{-2\lambda(s-t)} \), so altogether

\[E X_s X_t = e^{-2\lambda|s-t|}. \]

Problem 3

The sequence \((Z_k)_k \) forms a Markov chain. Indeed, by definition for any realization \(Z_1 = 1, Z_2 = n_2, \ldots, Z_k = n_k \) we have:

\[X_1 \leq X_{n_2} \leq X_{n_3} \leq \ldots \leq X_{n_k}. \]

Next

\[P(Z_k = n_{k-1} + m \mid Z_{k-1} = n_{k-1}) = P(Z_{k-1} = n_{k-1}, X_{n_{k-1} + m} > X_{n_{k-1}}, X_{n_{k-1} + m - 1} < X_{n_{k-1}}, \ldots, X_{n_{k-1} + 1} < X_{n_{k-1}}) \]

\[= P(Z_{k-1} = n_{k-1}) \]

Further, the event \(Z_k = n_{k-1} + m \) conditional on \(Z_{k-1} = n_{k-1} \)

is given by

\[X_{n_{k-1} + m} \geq X_{n_{k-1}}, X_{n_{k-1} + m - 1} < X_{n_{k-1}}, \ldots, X_{n_{k-1} + 1} < X_{n_{k-1}}. \]

For any value \(X_{n_{k-1}} = x \), \(P(X_{n_{k-1} + m} < x) = (F(x))^{m-1} \) by independence,
and \(P(X_{n_{k-1}+m} > x) = 1 - F(x) \).

Then the transition probability

\[
P(Z_k = n_{k-1} + m \mid Z_{k-1} = n_{k-1}) = \int_{-\infty}^{\infty} dF(\xi) (F(\xi) - F(x))^{m-1}
\]

\[
= \frac{1}{m} - \frac{1}{m+1} = \frac{1}{m(m+1)}, \quad m = 1, 2, \ldots
\]

This PMF does not depend on \(k \). Further, clearly

\[P(Z_k < k) = 0, \]

the first \(k \) elements in the \(k \)th row of the matrix of transitions = 0.

We conclude that the matrix has the form

\[
\begin{bmatrix}
0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{3} & \ldots & \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{3} & \ldots \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\end{bmatrix}
\]

Problem 4

We assume, as many students correctly did, that \(X \) and \(Y \) are jointly Gaussian.

(a) Since \(\max(a, b) = \frac{1}{2}(a + b + |a - b|) \) for any two numbers \(a, b \),

\[
E \max(X, Y) = \frac{1}{2} E \left| X - Y \right|
\]

\(Z = X - Y \) is a Gaussian RV with mean 0 and variance \(E(X-Y)^2 = 2 - 2 \rho \).

Thus \(E \max(X, Y) = \frac{1}{2} E |Z| \)

For an \(\mathcal{N}(0, \sigma^2) \) RV \(U

\[
E|U| = \frac{2}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\infty} \int_{-u/2\sigma^2}^{u/2\sigma^2} u \, du = \frac{1}{\sqrt{2\pi} \sigma} \int_{0}^{\infty} e^{-t^2/2\sigma^4} \, dt = 2\sigma
\]

\[
E^{1/2} = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-t^2/(2\sigma^4)} \, dt = \frac{2\sigma}{\sqrt{2\pi}}
\]
Finally, \(E \max(X,Y) = \frac{1}{2} E|Z| = \sqrt{\frac{2(1-p)}{2\pi}} = \sqrt{\frac{1-p}{\pi}} \)

(b) Since \(f_{XY}(x,y) = \frac{1}{\sqrt{2\pi(1-p^2)}} \exp(-\frac{x^2 - 2pxy + y^2}{2(1-p^2)}) \), we obtain

\[
 f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{1}{\sqrt{2\pi(1-p^2)}} e^{-\frac{x^2 - 2pxy + y^2}{2(1-p^2)}}
\]

This is a Gaussian pdf with mean \(pY \).

Since this is true for any realization \(Y=y \), we finally obtain

\[
 E[X|Y] = pY; \quad \text{Var}(X|Y) = 1-p^2.
\]

Another solution of (b):

Notice that \(X-pY \) and \(Y \) are uncorrelated:

\[
 E[(X-pY)Y] = E(XY) - pEY^2 = p - p \cdot 1 = 0
\]

Since they are Gaussian, they are also independent.

Then

\[
\]

For the variance \(\text{Var}(X|Y) \) compute

\[
 \text{Var}(X|Y) = E[X^2|Y] - (E[X|Y])^2
\]

\[
\]

Thus

\[
\]

\[
 \therefore \quad E[X^2|Y] = 1-p^2 + p^2 Y^2
\]

\[
 \text{Var}(X|Y) = 1-p^2 + p^2 Y^2 - p^2 Y^2 = 1-p^2
\]
(c) It is possible to solve this question by computing \(f_{Xz}(x,z) \) where \(Z = X + Y \) is a Gaussian \(N(0, 2 + 2\rho) \) random variable. We can also use the approach in (b), finding a pair of jointly Gaussian RVs that yield the answer. The RVs \(X, Z \) are jointly Gaussian:

\[
E[X] = 0; \quad E[Z] = 0; \quad E[X^2] = 1; \quad E[Z^2] = E[X^2 + 2XY + Y^2] = 2 + 2\rho
\]

\[
E[XZ] = 1 + \rho.
\]

Let \(Z' = \frac{Z}{\sqrt{2(1+\rho)}} \), then \(E[Z'] = 1 \) and \(E[XZ'] = \sqrt{\frac{1+\rho}{2}} \).

Now part (b) applies to RVs \(X \) and \(Z' \), implying:

\[
E(X \mid Z') = \frac{1+\rho}{2} Z'
\]

Let \(Z' = \frac{Z}{\sqrt{2(1+\rho)}} \) \(\iff \) \(X + Y = Z \)

We obtain:

\[
E(X \mid X + Y = z) = \frac{1+\rho}{2} \frac{z}{\sqrt{2(1+\rho)}} = \frac{z}{2}
\]

Similarly, we can use the result of part (b) to compute the variance. The role of \((X, Y) \) in part (b) is played by \((X, Z') \), and we obtain:

\[
\text{Var}(X \mid X + Y = z) = 1 - \left(\frac{1+\rho}{2} \right)^2 = \frac{1-\rho}{2}
\]

(d) **First solution:** Direct calculation using

\[
E[X + Y \mid X > 0, Y > 0] = \frac{1}{P(X > 0, Y > 0)} \int_0^\infty \int_0^\infty (x+y) f_{XY}(x,y) \, dx \, dy
\]

where the joint PDF \(f_{XY} \) is given in part (b).

For the ease of calculation we need to separate the variables \(x, y \).
In [Lee.22] we showed that any Gaussian vector can be transformed to a vector of uncorrelated Gaussian RVs by a unitary transformation. Let
\[\Lambda = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]
then
\[\Lambda \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \Lambda^T = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1+\rho & 1-\rho \\ 1+\rho & -1+\rho \end{bmatrix} = \begin{bmatrix} 2(1+\rho) & 0 \\ 0 & 2(1-\rho) \end{bmatrix} \]

Denote the new variables by \(Z_1, Z_2 \):
\[Z_1 = X + \gamma, \quad Z_2 = X - \gamma \]

We have
\[\{X > 0, \gamma > 0\} \iff \{Z_1 + Z_2 > 0, Z_1 - Z_2 > 0\} \]
\[\iff \{Z_1 > 0, Z_1 > |\gamma| \leq Z_1\} \]

Then
\[P(X > 0, \gamma > 0) = P(Z_1 > 0, |\gamma| < Z_1) = \int_0^\infty \int_{-Z_1}^{Z_1} \frac{1}{2\pi \sqrt{4-\gamma^2}} e^{-\frac{z_1^2}{4(1+\rho)} - \frac{z_2^2}{4(1-\rho)}} dz_1 dz_2 \]
\[= \frac{1}{2\pi \sqrt{4-\gamma^2}} \int_0^\infty \int_{-Z_1}^{Z_1} e^{-\frac{z_1^2}{4(1+\rho)} - \frac{z_2^2}{4(1-\rho)}} dZ_2 dZ_1 \]
\[= \frac{1}{2\pi \sqrt{4-\gamma^2}} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_0^\infty e^{-\frac{r^2 \cos^2 \theta}{4(1+\rho)} - \frac{r^2 \sin^2 \theta}{4(1-\rho)}} r dr d\theta \]
Now using A above, we compute
\[
E(X+Y | X > 0, Y > 0) = E(Z, | Z_1 > 0, \ |Z_2| < Z_1)
\]
\[
= \frac{4}{1+p} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{z_1^2}{\sqrt{1-p^2}} \frac{z_2^2}{\sqrt{1-(1-p)^2}} \ e^{-\frac{z_1^2}{1+p}} \ e^{-\frac{z_2^2}{1-(1-p)^2}} \ dz_2 \ dz_1 = 2\sqrt{\frac{2}{\pi}}.
\]

Second solution. Let \(A = \{X > 0, Y > 0\} \)
\[
P(A) = \frac{1}{2}, \quad \text{(by symmetry or by direct calculation)}
\]
\[
f_{x1\mid A}(x) = \frac{1}{P(A)} f_x(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad 0 \leq x < \infty
\]
\[
E[X \mid A] = \int_0^\infty x f_{x1\mid A}(x) \ dx = \sqrt{\frac{2}{\pi}} = E[Y \mid A] \quad \text{by symmetry}
\]
Then
\[
E[X + Y \mid A] = 2\sqrt{\frac{2}{\pi}}
\]
by linearity of expectation.

Problem 5

(a) We define a natural filtration \(\cF_n := \sigma(Z_1, \ldots, Z_n) \)
\[
E[X_n | \cF_n] = -\frac{3}{4} X_{n-1} + \frac{c}{4} X_{n-1} = X_{n-1} \quad \text{if} \ c = 3.
\]

(b) The random walk that makes 3 steps to the right a prob. \(\frac{3}{4} \)
and one step to the left with prob. \(\frac{1}{4} \) does not converge a.s.
First note that \(EZ = 0 \); \(EZ^2 = \frac{3}{4} + \frac{9}{4} = 3 \).

Then \(EX_n = 5 \), \(\text{Var} \ X_n = 3n \).

Using CLT, \[
\frac{X_n - 5}{\sqrt{3n}} \xrightarrow{d} N(0,1)
\]

Now suppose that there is an RV \(Y \) s.t. \(X_n \xrightarrow{a.s.} Y \). If so, then \(\frac{X_n}{\sqrt{3n}} \xrightarrow{a.s.} 0 \), which would imply that \(\frac{X_n}{\sqrt{3n}} \xrightarrow{d} 0 \).

This yields a contradiction.

(c) The random walk described in the problem forms an irreducible Markov chain on \(\mathbb{Z} \) that starts at \(X_0 = 5 \). The chain can return to 5 after \(4n \) steps, \(n \in \mathbb{N} \). Since to compensate one step \(\rightarrow \) we need 3 steps \(\leftarrow \). Thus

\[
P_{5,5}^{(4n)} = \binom{4n}{n} \left(\frac{1}{4} \right)^n \left(\frac{3}{4} \right)^{3n}
\]

\[
\sum_{n=1}^{\infty} \binom{4n}{n} \left(\frac{1}{4} \right)^n \left(\frac{3}{4} \right)^{3n} = \infty \quad \begin{cases} \text{Just barely;} \\ \text{and the inequality is close.} \end{cases}
\]

and thus the states are recurrent.

We showed in class that if state 0 is recurrent (it is) and it can reach 5 with prob. \(f_{0 \rightarrow 5} > 0 \) (it can), then \(f_{5 \rightarrow 0} = \mathbb{P} \left(\bigcap_{n=1}^{\infty} \{ X_n = 0 \} \mid X_0 = 5 \right) = 1 \) (Gallager, Lemma 6.2.4).

Thus \(f_{5,0} = 1 \), so the claim in the question is true.
Another solution:

Set up a gambler's ruin problem with starting capital 0 and the barriers \(a = 5 \) and some \(b > 5 \).

Our random walk forms a martingale, and

\[
\tau := \min \{ n : X_n = -a \text{ or } X_n = b \}
\]

is a finite stopping time, so the Optional Stopping Theorem applies.

Using the example in Lec. 26 (p. 7), the probability of hitting \(-a\) before \(b\) is

\[
\frac{b}{a+b}
\]

Now let \(b \to \infty \) to conclude that the probability of reaching \(-a\) becomes \(= 1 \).